期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
关于三角形的一个正切公式及其应用
1
作者
谢进武
傅波
《中学数学教学》
2010年第1期37-38,共2页
在三角形中刻画边角关系最重要的定理是正弦定理和余弦定理.但在近几年高考数学试题中经常出现三角形中角的正切问题.为此我们向读者介绍下面的一个正切公式:定理设非直角△ABC的三个内角A、B、C所对的边为a、b、c,S为其面积,则有:tanA=...
在三角形中刻画边角关系最重要的定理是正弦定理和余弦定理.但在近几年高考数学试题中经常出现三角形中角的正切问题.为此我们向读者介绍下面的一个正切公式:定理设非直角△ABC的三个内角A、B、C所对的边为a、b、c,S为其面积,则有:tanA=b2+4c2S-a2;tanB=a2+4cS2-b2;tanC=a2+4bS2-c2.证明由余弦定理cosA=b2+2cb2c-a2及面积公式S=12bcsinA得:tanA=csionsAA=b22+bccsi2n-Aa2=b2+4c2S-a2.同理可证其它两式.这个公式刻画了三角形(非直角三角形)的三个角正切值与其面积、三边的关系.在解有关三角形正切问题中有着很广泛的应用.现举几例予以说明.例1(2005年天津卷理17题)在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2和bc=21+3,求∠A和tanB.解由余弦定理得:cosA=b2+2cb2c-a2=bc2bc=21.故∠A=3π.由正切公式得:tanB=a2+4cS2-b2=4×21bcsin3πa2+c2-b2=2c23-bcbc=2c3-bb=2.bc3-1=3...
展开更多
关键词
余弦定理
下载PDF
职称材料
题名
关于三角形的一个正切公式及其应用
1
作者
谢进武
傅波
机构
辽宁铁岭教师进修学院
辽宁省铁岭市高级中学
出处
《中学数学教学》
2010年第1期37-38,共2页
文摘
在三角形中刻画边角关系最重要的定理是正弦定理和余弦定理.但在近几年高考数学试题中经常出现三角形中角的正切问题.为此我们向读者介绍下面的一个正切公式:定理设非直角△ABC的三个内角A、B、C所对的边为a、b、c,S为其面积,则有:tanA=b2+4c2S-a2;tanB=a2+4cS2-b2;tanC=a2+4bS2-c2.证明由余弦定理cosA=b2+2cb2c-a2及面积公式S=12bcsinA得:tanA=csionsAA=b22+bccsi2n-Aa2=b2+4c2S-a2.同理可证其它两式.这个公式刻画了三角形(非直角三角形)的三个角正切值与其面积、三边的关系.在解有关三角形正切问题中有着很广泛的应用.现举几例予以说明.例1(2005年天津卷理17题)在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2和bc=21+3,求∠A和tanB.解由余弦定理得:cosA=b2+2cb2c-a2=bc2bc=21.故∠A=3π.由正切公式得:tanB=a2+4cS2-b2=4×21bcsin3πa2+c2-b2=2c23-bcbc=2c3-bb=2.bc3-1=3...
关键词
余弦定理
分类号
G634.6 [文化科学—教育学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
关于三角形的一个正切公式及其应用
谢进武
傅波
《中学数学教学》
2010
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部