期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SSM:基于孪生网络的糖尿病视网膜眼底图像分类模型
1
作者 谭嘉辰 董永权 张国玺 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期425-434,共10页
糖尿病视网膜病变是由糖尿病引起的一种重要眼部疾病,不及时治疗可能会导致失明,现有的诊断方法主要依靠医生手动分类,但这种方法耗时耗力.随着深度学习的发展,越来越多的自动分类技术被应用到医学领域.针对糖尿病视网膜病变严重程度的... 糖尿病视网膜病变是由糖尿病引起的一种重要眼部疾病,不及时治疗可能会导致失明,现有的诊断方法主要依靠医生手动分类,但这种方法耗时耗力.随着深度学习的发展,越来越多的自动分类技术被应用到医学领域.针对糖尿病视网膜病变严重程度的分类问题,样本图像十分稀缺,传统的单支模型很难达到较高的分类性能,提出一种孪生结构的分类模型Siamese Model with Swin-Transformer and MLP-Based U-Net(SSM),并利用数据扩增来解决此问题.首先,利用直方图均衡化、高斯滤波和增强对比度等方法预处理图像;然后,将预训练的Swin-Transformer作为SSM模型的特征提取分支网络来获得层次化的特征表示;此外,还设计了一个含有跳跃连接结构的MLP-Based U-Net(MU-Net)作为SSM模型的分类器来对提取的特征进行分类.在Messidor数据集上进行训练和测试,与现有最先进的模型相比,SSM模型性能更优,在测试集上的精确率达0.976,召回率达0.975,F1达0.976,准确率达0.975,Kappa系数达0.967. 展开更多
关键词 糖尿病视网膜病变分类 深度学习 孪生网络 TRANSFORMER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部