In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and...In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.展开更多
We study exciton transfer dynamics in a trimer system by investigating excitation transfer probability (ETP). We calculate ETP in the zero-temperature limit and theoretically predict the environment-assisted quantum...We study exciton transfer dynamics in a trimer system by investigating excitation transfer probability (ETP). We calculate ETP in the zero-temperature limit and theoretically predict the environment-assisted quantum critical effect, in which ETP exhibits a sudden change at the critical point of quantum phase transition for the trimer. In particular, we find that the steady-state ETP can be observed in the presence of the environment interaction.展开更多
We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an op...We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an optical parametric amplifier before a Mach-Zehnder interferometer. It is shown that our hybrid protocol can obtain a better quantum Cramer- Rao bound than the pure active (e.g., SU(1, I)) interferometer, and this precision can be reached by implementing the parity measurements. Furthermore, we also draw a detailed comparison between our scheme and the scheme suggested by Caves [Phys. Rev. D 23 1693 (1981)], and it is found that the optimal phase sensitivity gain obtained in our scheme is always larger than that in Caves' scheme.展开更多
基金Supported by the National Fundamental Research Program under Grant No.2007CB925204the National Natural Science Foundation of China under Grant Nos.10775048 and 10325523the Education Committee of Hunan Province under Grant No.08W012
文摘In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11075050)the National Basic Research Program of China (Grant No. 2013CB921804)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT0964)the Hunan Provincial National Science Foundation, China (Grant No. 11JJ7001)
文摘We study exciton transfer dynamics in a trimer system by investigating excitation transfer probability (ETP). We calculate ETP in the zero-temperature limit and theoretically predict the environment-assisted quantum critical effect, in which ETP exhibits a sudden change at the critical point of quantum phase transition for the trimer. In particular, we find that the steady-state ETP can be observed in the presence of the environment interaction.
基金Project supported by the National Natural Science Foundation of China(Grant No.11665010)the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,China(Grant No.QSQC1414)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.17B055)
文摘We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an optical parametric amplifier before a Mach-Zehnder interferometer. It is shown that our hybrid protocol can obtain a better quantum Cramer- Rao bound than the pure active (e.g., SU(1, I)) interferometer, and this precision can be reached by implementing the parity measurements. Furthermore, we also draw a detailed comparison between our scheme and the scheme suggested by Caves [Phys. Rev. D 23 1693 (1981)], and it is found that the optimal phase sensitivity gain obtained in our scheme is always larger than that in Caves' scheme.