本文考虑具有正态误差假设下混合回归模型的参数估计问题.由于似然函数的无界性,混合回归模型普通的最大似然估计不存在.本文提出一种惩罚最大似然方法来估计混合回归模型的参数,证明惩罚最大似然估计量(penalized maximum likelihood e...本文考虑具有正态误差假设下混合回归模型的参数估计问题.由于似然函数的无界性,混合回归模型普通的最大似然估计不存在.本文提出一种惩罚最大似然方法来估计混合回归模型的参数,证明惩罚最大似然估计量(penalized maximum likelihood estimation, PMLE)具有强相合和渐近正态性.通过深入模拟研究,从估计精确性角度看,惩罚最大似然估计量有很好的表现.本文还给出一个音调感知的例子来说明理论结果的应用.展开更多
文摘本文考虑具有正态误差假设下混合回归模型的参数估计问题.由于似然函数的无界性,混合回归模型普通的最大似然估计不存在.本文提出一种惩罚最大似然方法来估计混合回归模型的参数,证明惩罚最大似然估计量(penalized maximum likelihood estimation, PMLE)具有强相合和渐近正态性.通过深入模拟研究,从估计精确性角度看,惩罚最大似然估计量有很好的表现.本文还给出一个音调感知的例子来说明理论结果的应用.