基于密度泛函理论,利用多氯二苯并对二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)几何构型全优化而得的量子化学和延伸计算参数:前线轨道能、熵、无迹四极矩、分子绝对硬度、电负性和亲电指数等,对两类化合物在(虹鳉)脂-水间的平衡分配性质进...基于密度泛函理论,利用多氯二苯并对二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)几何构型全优化而得的量子化学和延伸计算参数:前线轨道能、熵、无迹四极矩、分子绝对硬度、电负性和亲电指数等,对两类化合物在(虹鳉)脂-水间的平衡分配性质进行了定量化模型研究,并由多元线性回归分析(MLR)建立了二次函数型的定量结构-性质相关关系(QSPR):lgKbw=5.343-0.001(S-125.480)2-0.355(ω-3.239)2+0.006(Qzz-2.950)2-22.728(η-2.365)2.结果表明,模型具有较高的拟合优度与稳健性,其决定系数和交叉验证相关系数分别为0.943和0.908,且模型的内外部预测性能理想,总体质量明显优于SOFA(solubility parameter for fate analysis)计算结果,可用于未知脂-水分配性质的预测;PCDD/Fs脂-水平衡分配(系数)主要与分子体积以及由电荷分布决定的芳烃分子间相互作用有关,也受潜在的生物转化和分子反应性的影响.展开更多
研究了加速溶剂萃取(ASE)、固相萃取柱净化(SPE)、高效液相色谱(HPLC)联合(ASE-SPE-HPLC)测定土壤及蚯蚓样品中7种多环芳烃(PAHs)的分析方法,确定了以正己烷-丙酮(4∶1,V/V)作为萃取剂,用ASE对土壤及蚯蚓进行萃取,提取液经...研究了加速溶剂萃取(ASE)、固相萃取柱净化(SPE)、高效液相色谱(HPLC)联合(ASE-SPE-HPLC)测定土壤及蚯蚓样品中7种多环芳烃(PAHs)的分析方法,确定了以正己烷-丙酮(4∶1,V/V)作为萃取剂,用ASE对土壤及蚯蚓进行萃取,提取液经SPE柱净化(土壤样品用硅胶柱净化,蚯蚓样品用Al_2O_3-硅胶柱净化),正己烷-二氯甲烷(9∶1,V/V)进行洗脱,洗脱体积为10 m L,旋转浓缩蒸干后,乙腈定容,过0.22μm有机滤膜,最后用HPLC对提取液中7种PAHs进行定量的分析方法。土壤样品方法回收率在83.5%~110.2%之间,相对标准偏差为1.0%~4.6%;蚯蚓样品回收率在81.2%~97.1%之间,相对标准偏差为1.6%~4.2%。方法检出限为0.15~0.85μg/kg,且重现性好。可满足样品分析的质量控制要求,表明本分析方法具有良好的准确性与可靠性。展开更多
文摘基于密度泛函理论,利用多氯二苯并对二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)几何构型全优化而得的量子化学和延伸计算参数:前线轨道能、熵、无迹四极矩、分子绝对硬度、电负性和亲电指数等,对两类化合物在(虹鳉)脂-水间的平衡分配性质进行了定量化模型研究,并由多元线性回归分析(MLR)建立了二次函数型的定量结构-性质相关关系(QSPR):lgKbw=5.343-0.001(S-125.480)2-0.355(ω-3.239)2+0.006(Qzz-2.950)2-22.728(η-2.365)2.结果表明,模型具有较高的拟合优度与稳健性,其决定系数和交叉验证相关系数分别为0.943和0.908,且模型的内外部预测性能理想,总体质量明显优于SOFA(solubility parameter for fate analysis)计算结果,可用于未知脂-水分配性质的预测;PCDD/Fs脂-水平衡分配(系数)主要与分子体积以及由电荷分布决定的芳烃分子间相互作用有关,也受潜在的生物转化和分子反应性的影响.
文摘研究了加速溶剂萃取(ASE)、固相萃取柱净化(SPE)、高效液相色谱(HPLC)联合(ASE-SPE-HPLC)测定土壤及蚯蚓样品中7种多环芳烃(PAHs)的分析方法,确定了以正己烷-丙酮(4∶1,V/V)作为萃取剂,用ASE对土壤及蚯蚓进行萃取,提取液经SPE柱净化(土壤样品用硅胶柱净化,蚯蚓样品用Al_2O_3-硅胶柱净化),正己烷-二氯甲烷(9∶1,V/V)进行洗脱,洗脱体积为10 m L,旋转浓缩蒸干后,乙腈定容,过0.22μm有机滤膜,最后用HPLC对提取液中7种PAHs进行定量的分析方法。土壤样品方法回收率在83.5%~110.2%之间,相对标准偏差为1.0%~4.6%;蚯蚓样品回收率在81.2%~97.1%之间,相对标准偏差为1.6%~4.2%。方法检出限为0.15~0.85μg/kg,且重现性好。可满足样品分析的质量控制要求,表明本分析方法具有良好的准确性与可靠性。