The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conser...The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10^-9 m/s^2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10^-10 m/s^2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites are mainly decomposed into YA1(2) and ZA1(2) in the orbital plane. Since XA1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of XA1(2) can not be thrown off entirely, but be reduced properly.展开更多
基金Supported by the Funds of Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No KZCX2-YW-202, the National High-Tech Research and Development Programme of China under Grant No 2006AA09Z153, and the National Natural Science Foundation of China under Grant Nos 40674038 and 40674013.The authors greatly appreciate the helpful and constructive discussion from Professor J. Luo, School of Physics, Huazhong University of Science and Technology, China and Dr P. L. Xu, Disaster Prevention Research Institute, Kyoto University, Japan.
文摘The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10^-9 m/s^2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10^-10 m/s^2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites are mainly decomposed into YA1(2) and ZA1(2) in the orbital plane. Since XA1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of XA1(2) can not be thrown off entirely, but be reduced properly.