Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural...Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural network under partial least squares framework (ARX-NNPLS), in which less specific knowledge of the process is required but the input and output data. To represent the dynamic and nonlinear behavior of the process, the ARX combined with neural network is used in the partial least squares (PLS) inner model between input and output latent variables. In the proposed dynamic optimization strategy based on the ARX-NNPLS model, neither parameterization nor iterative solving process for DAEs is needed as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process, and the computing time is greatly reduced compared to conventional control vector parameterization method. To demonstrate the ARX-NNPLS model based optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is taken into account. The optimization results show that the final optimal trajectory of quality index determined by the new approach moves faster to the target values and the computing time is much less.展开更多
For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used ...For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.展开更多
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ...In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.展开更多
One measurement-based dynamic optimization scheme can achieve optimality under uncertainties by tracking the necessary condition of optimality(NCO-tracking), with a basic assumption that the solution model remains inv...One measurement-based dynamic optimization scheme can achieve optimality under uncertainties by tracking the necessary condition of optimality(NCO-tracking), with a basic assumption that the solution model remains invariant in the presence of all kinds of uncertainties. This assumption is not satisfied in some cases and the standard NCO-tracking scheme is infeasible. In this paper, a novel two-level NCO-tracking scheme is proposed to deal with this problem. A heuristic criterion is given for triggering outer level compensation procedure to update the solution model once any change is detected via online measurement and estimation. The standard NCO-tracking process is carried out at the inner level based on the updated solution model. The proposed approach is illustrated via a bioreactor in penicillin fermentation process.展开更多
基金Supported by the National Natural Science Foundation of China (61174114)the National High Technology Research and Development Program of China (2007AA04Z168, 2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China (20050335018)
文摘Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural network under partial least squares framework (ARX-NNPLS), in which less specific knowledge of the process is required but the input and output data. To represent the dynamic and nonlinear behavior of the process, the ARX combined with neural network is used in the partial least squares (PLS) inner model between input and output latent variables. In the proposed dynamic optimization strategy based on the ARX-NNPLS model, neither parameterization nor iterative solving process for DAEs is needed as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process, and the computing time is greatly reduced compared to conventional control vector parameterization method. To demonstrate the ARX-NNPLS model based optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is taken into account. The optimization results show that the final optimal trajectory of quality index determined by the new approach moves faster to the target values and the computing time is much less.
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)+1 种基金the Natural Science Foundation of Zhejiang Province(LQ15F030006)the Educational Commission Research Program of Zhejiang Province(Y201431412)
文摘For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.
基金Support by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)Zhejiang Provincial Science and Technology Planning Projects of China(2014C31019)
文摘In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education
文摘One measurement-based dynamic optimization scheme can achieve optimality under uncertainties by tracking the necessary condition of optimality(NCO-tracking), with a basic assumption that the solution model remains invariant in the presence of all kinds of uncertainties. This assumption is not satisfied in some cases and the standard NCO-tracking scheme is infeasible. In this paper, a novel two-level NCO-tracking scheme is proposed to deal with this problem. A heuristic criterion is given for triggering outer level compensation procedure to update the solution model once any change is detected via online measurement and estimation. The standard NCO-tracking process is carried out at the inner level based on the updated solution model. The proposed approach is illustrated via a bioreactor in penicillin fermentation process.