期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的火源热释放速率预测方法
1
作者 杨云浩 张国维 +2 位作者 朱国庆 袁狄平 贺名欢 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期922-932,共11页
火源热释放速率的准确测量对深入理解火灾演变过程至关重要,然而目前被广泛使用的氧耗法所需设备造价昂贵,成本较高。该文提出了一种基于机器学习的综合性框架,用于输入温度数据预测火源热释放速率。基于火灾动力学模拟(FDS)软件模拟ISO... 火源热释放速率的准确测量对深入理解火灾演变过程至关重要,然而目前被广泛使用的氧耗法所需设备造价昂贵,成本较高。该文提出了一种基于机器学习的综合性框架,用于输入温度数据预测火源热释放速率。基于火灾动力学模拟(FDS)软件模拟ISO 9705房间内不同参数的火灾场景,获取不同位置的温度数据,并建立火灾数据库。分别基于最小绝对收缩和选择(Lasso)、随机森林(RF)两种模型的递归特征消除(RFE)算法进行特征筛选,得到两个不同的低维特征子集,并设置对照组。基于不同的特征子集,分析比较了线性回归(LR)、K最近邻(KNN)和轻量级梯度提升机(LightGBM)3种典型模型对热释放速率的预测性能。结果表明:基于随机森林模型的递归特征消除算法筛选所得的特征子集训练的LightGBM模型预测效果最佳,预测结果的根均方误差(RMSE)和均绝对误差(MAE)分别为23.89 kW和15.49 kW,决定系数为0.991 6。该基于机器学习的综合性框架预测效果优异且实施成本较低,为预测火源热释放速率提供了有效途径。 展开更多
关键词 热释放速率 机器学习 特征筛选 递归特征消除 回归预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部