-
题名基于混合评价指标的自组织模糊神经网络设计研究
被引量:2
- 1
-
-
作者
乔俊飞
贺增增
杜胜利
-
机构
北京工业大学信息学部
计算智能与智能系统北京市重点实验室
-
出处
《化工学报》
EI
CAS
CSCD
北大核心
2019年第7期2606-2615,共10页
-
基金
国家自然科学基金项目(61533002,61603012,61603009)
北京市教委项目(KM201710005025)
中国博士后科学基金项目(2017M620555)
-
文摘
针对在无增长和修剪阈值时模糊神经网络结构难以自适应问题,提出一种基于混合评价指标(hybridevaluation index, HEI)的结构设计方法。首先,通过模糊C均值聚类算法(fuzzy C-means clustering, FCM)确定初始规则层神经元数目及其中心与宽度。其次,基于戴维森堡丁指数(Davies bouldin index, DBI)和邓恩指数(Dunn index, DI)提出一种新的相关性评价指标(relevance evaluation index, REI)来计算规则层各神经元输出之间的相关性,同时根据训练过程中网络输出均方根误差(root mean square error, RMSE)的变化情况来确定网络的学习能力,然后基于REI和RMSE提出了HEI。通过HEI来调整模糊神经网络的拓扑结构,有效解决了在无增长和修剪阈值时网络结构难以动态自调整的问题且避免了网络结构冗余。最后,通过对Mackey-Glass时间序列预测、非线性系统辨识和大气中PM2.5浓度预测,证明了该结构设计方法的可行性和有效性。
-
关键词
自组织模糊神经网络
混合评价指标
优化设计
动态建模
预测
-
Keywords
self-organizing fuzzy neural network
hybrid evaluation index (HEI)
optimal design
dynamic modeling
prediction
-
分类号
TP183
[自动化与计算机技术—控制理论与控制工程]
-