期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究:从单原子位点到单团簇位点
1
作者 黄正清 贺姝玥 +3 位作者 班涛 高新 许云华 常春然 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第5期90-100,共11页
随着天然气和页岩气资源的大量发现,作为主要成分的甲烷,其转化为高值化学品是一条具有开发潜力的路径.在各种甲烷转化途径中,甲烷无氧直接转化具有碳原子利用率高和二氧化碳排放少的优点,更具应用前景.然而,甲烷的无氧转化仍然面临反... 随着天然气和页岩气资源的大量发现,作为主要成分的甲烷,其转化为高值化学品是一条具有开发潜力的路径.在各种甲烷转化途径中,甲烷无氧直接转化具有碳原子利用率高和二氧化碳排放少的优点,更具应用前景.然而,甲烷的无氧转化仍然面临反应温度高、C_(2)烃选择性低和催化剂易积碳失活的难题.因此,大量的研究集中在催化剂研发上,期望通过选择性地打破C-H键,并且催化C-C偶联,实现高效活化甲烷、高选择性生成C_(2)烃,近期研究发现,被Cu等金属隔离的Pt位点,被金属氧化物分散的Pt位点,都有利于甲烷无氧偶联生成C_(2)烃.特别是Pt-Cu单原子合金催化剂,其中分散的Pt单原子不仅.具有较高的打破C-H键活性,而且能够抑制甲烷深度脱氢,具有很好的抗积碳性能.虽然单原子Pt具有很好的甲烷活化性能,但进一步催化C_(2)烃生成的反应过程并不清楚,同时单分散的Pt团簇也可能存在于Pt-Cu合金表面,而关于它们催化甲烷无氧偶联的机制也缺乏研究和认识.本文在Cu(111)表面建立Pt_(1),Pt_(2)和Pt_(3)位点(分别标记为Pt_(1)©Cu(111),Pt_(2)©Cu(111)和Pt_(3)©Cu(111)),采用密度泛函理论计算与微观动力学模拟相结合的方法,研究甲烷无氧偶联的催化反应机理与反应性能,评估并比较单原子与单团簇的催化反应性能.通过对甲烷分解的基元反应计算发现,CH_(4),CH_(3)和CH_(2)的脱氢反应分别在Cu(111)上的Pt_(1),Pt_(2)和Pt_(3)位点上最有利.然而,相应的CHx(x=3,2,1)物种直接偶联形成C_(2)H_(6),C_(2)H_(4)和C_(2)H_(2)的反应,分别在Cu(111)上的Pt_(3),Pt_(1)和Pt_(2)位点上最有利.三种Pt位点独特的反应趋势,主要源于Pt位点与CHx物种不同的结合能力.反应条件下甲烷无氧偶联的微观动力学模拟表明,Pt_(1)©Cu(111)催化甲烷转化的活性最高,而加入少量的氢气可以显著提高乙烯的选择性,750 K时最高选择性可达96.2%.在Pt_(1)©Cu(111)表面,Pt位点主要负责C-H键裂解,Cu位点是C-C偶联的活性中心.通过密度泛函理论计算,发现Pt_(1)©Cu(111)在反应条件下结构稳定.综上,本文揭示了Pt单原子位点(SASs)和Pt单团簇位点(SCSs)上的甲烷无氧偶联反应机制,并预测Pt SASs在甲烷无氧偶联中比Pt SCSs更有优势,为高效甲烷无氧偶联催化剂制备提供一定借鉴. 展开更多
关键词 甲烷 微观动力学模拟 单原子催化剂 单团簇催化剂 密度泛函理论
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部