期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种结合共同邻居和用户评分信息的相似度算法 被引量:13
1
作者 贺银慧 陈端兵 +1 位作者 陈勇 傅彦 《计算机科学》 CSCD 北大核心 2010年第9期184-186,204,共4页
随着互联网的发展,推荐系统逐步得到广泛应用,协同过滤(CF)是其中运用得最早、最成功的技术之一。CF首先根据用户间的相似度,找出每个用户的近邻;然后根据目标用户近邻的评分预测目标用户的评分;最后把预测评分较高的项目推荐给目标用... 随着互联网的发展,推荐系统逐步得到广泛应用,协同过滤(CF)是其中运用得最早、最成功的技术之一。CF首先根据用户间的相似度,找出每个用户的近邻;然后根据目标用户近邻的评分预测目标用户的评分;最后把预测评分较高的项目推荐给目标用户。因此相似度计算方法直接关系到预测结果的准确性,对推荐起着至关重要的作用。目前,学者们已从不同的角度提出了各种各样的相似度计算方法,其中共同邻居算法(common-neighbors)是一种简单有效的方法。但此法仅考虑了两用户间的共同邻居数,忽略了用户的具体评分信息。针对这个问题对共同邻居算法进行了改进,同时考虑了共同邻居数和用户的评分信息。实验结果表明,改进的共同邻居算法在一定程度上可提高评分预测的准确性。 展开更多
关键词 协同过滤 共同邻居 相似度算法 评分信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部