相比其它聚类算法,密度峰值点快速搜索聚类算法(clustering by fast search and find of density peaks,DPC)只需较少的参数就能达到较好的聚类结果,然而当某个类存在多个密度峰值时,聚类结果不理想.针对这一问题,提出一种基于簇边界划...相比其它聚类算法,密度峰值点快速搜索聚类算法(clustering by fast search and find of density peaks,DPC)只需较少的参数就能达到较好的聚类结果,然而当某个类存在多个密度峰值时,聚类结果不理想.针对这一问题,提出一种基于簇边界划分的DPC算法:B-DPC算法.改进算法首先利用一种新的去除噪声准则对数据集进行清理,再调用DPC算法进行首次聚类.最后搜索并发现邻近类的边界样本,根据边界样本的数量和所占比例,对首次聚类结果进行二次聚类.实验证明,B-DPC算法较好地解决了多密度峰值聚类问题,能够发现任意形状的簇,对噪声不敏感.展开更多
文摘相比其它聚类算法,密度峰值点快速搜索聚类算法(clustering by fast search and find of density peaks,DPC)只需较少的参数就能达到较好的聚类结果,然而当某个类存在多个密度峰值时,聚类结果不理想.针对这一问题,提出一种基于簇边界划分的DPC算法:B-DPC算法.改进算法首先利用一种新的去除噪声准则对数据集进行清理,再调用DPC算法进行首次聚类.最后搜索并发现邻近类的边界样本,根据边界样本的数量和所占比例,对首次聚类结果进行二次聚类.实验证明,B-DPC算法较好地解决了多密度峰值聚类问题,能够发现任意形状的簇,对噪声不敏感.