针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误...针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.展开更多
文摘针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.