期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络的地质岩心钻探钻速预测研究
1
作者 贾明让 胡远彪 +1 位作者 勾文超 周正 《超硬材料工程》 CAS 2024年第5期12-19,共8页
地质岩心钻探目前在自动化、智能化方面的发展还并未成熟。钻探参数的选取、改进还主要通过经验来判断,并且需要提钻后通过对岩心的判断进行钻探参数的调整,具有一定的滞后性,降低了钻探的效率。因此,通过搭建地质岩心钻探试验台获取钻... 地质岩心钻探目前在自动化、智能化方面的发展还并未成熟。钻探参数的选取、改进还主要通过经验来判断,并且需要提钻后通过对岩心的判断进行钻探参数的调整,具有一定的滞后性,降低了钻探的效率。因此,通过搭建地质岩心钻探试验台获取钻探数据,采取反向传播(Back-Propagation)算法,将钻压(WOB),扭矩(TOR),泵量(Q),回转速度(RPM)作为输入量,机械钻速(ROP)作为输出量,同时考虑钻头磨损和钻头切削深度对实验的影响。以每块不同混凝土块为单位,按照80/20划分训练集与测试集,通过数据处理后共得到6180组数据进行训练和测试,训练出最优的神经网络模型,可以对机械钻速(ROP)进行预测,预测精度可达94.1%,后续通过选取合适的钻进参数,可以实现地质岩心钻探速度的优化。本研究为地质岩心钻探的钻速预测,地质岩心钻机自动化提供参考。 展开更多
关键词 地质岩心钻探 反向传播算法 钻速预测 BP神经网络 ROP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部