期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EnKF和PF的沙壕渠灌域土壤含盐量监测模型研究 被引量:2
1
作者 张智韬 陈策 +3 位作者 贾江栋 殷皓原 姚一飞 黄小鱼 《农业机械学报》 EI CAS CSCD 北大核心 2023年第6期361-372,共12页
为探究不同数据同化算法在时空尺度上监测土壤含盐量的可行性,以内蒙古河套灌区沙壕渠灌域为研究区域,采用高分一号卫星遥感图像作为数据源,通过EnKF算法和PF算法的同化观测算子和模型算子得到时空范围中的土壤含盐量变化情况。其中观... 为探究不同数据同化算法在时空尺度上监测土壤含盐量的可行性,以内蒙古河套灌区沙壕渠灌域为研究区域,采用高分一号卫星遥感图像作为数据源,通过EnKF算法和PF算法的同化观测算子和模型算子得到时空范围中的土壤含盐量变化情况。其中观测算子分为两步,首先通过PLS-VIP准则来筛选光谱指数作为自变量,再使用ELM模型建立基于不同时间不同深度的遥感监测土壤含盐量模型;模型算子为基于Hydrus-1D模型的数学模拟监测土壤含盐量模型。结果表明,基于ELM模型的土壤含盐量模型中,深度0~20 cm、20~40 cm和40~60 cm的平均IOA均在0.74以上,平均ME在0.14%以下,表明反演模型具有良好的精度;基于Hydrus-1D的数学模拟监测土壤含盐量模型中,3个深度平均IOA在0.79~0.89之间,平均ME在0.128%~0.137%之间,能够较好地反映土壤盐分在时间序列中的运移情况;EnKF算法3个深度IOA在0.820以上,ME在0.141%~0.157%之间,NMB在0.141~0.252之间,PF算法3个深度IOA在0.89以上,ME在0.090%~0.142%之间,NMB在0.075~0.097之间,精度优于EnKF算法,能够很好地反映土壤含盐量在时间和空间上的分布情况。本文基于EnKF和PF算法进行Hydrus-1D模型和ELM模型的同化方案研究,提高了土壤含盐量的监测精度,可为后续在长时间大范围的时空尺度上监测土壤含盐量提供依据,也可为精准农业防治土壤盐渍化的研究提供参考。 展开更多
关键词 土壤含盐量 数据同化 集合卡尔曼滤波 粒子滤波 极限学习机 HYDRUS-1D
下载PDF
基于无人机遥感的夏玉米水分胁迫指数改进方法 被引量:5
2
作者 刘奇 张智韬 +4 位作者 刘畅 贾江栋 黄嘉亮 郭宇宏 张秋雨 《农业工程学报》 EI CAS CSCD 北大核心 2023年第2期68-77,共10页
冠层温度(canopy temperature,T_(c))是作物水分胁迫计算的基础。准确地剔除热红外图像中的土壤背景,可以提高作物水分的监测精度。该研究以4种水分处理的拔节期夏玉米为研究对象,借助无人机可见光和热红外图像,采用红绿比值指数(red-gr... 冠层温度(canopy temperature,T_(c))是作物水分胁迫计算的基础。准确地剔除热红外图像中的土壤背景,可以提高作物水分的监测精度。该研究以4种水分处理的拔节期夏玉米为研究对象,借助无人机可见光和热红外图像,采用红绿比值指数(red-green ratio index,RGRI)法提取研究区域的面状玉米冠层温度的空间分布信息,并分析每幅热红外图像上冠层温度的累积频率。该并提出了两种改进作物水分胁迫指数(crop water stress index,CWSI)性能的方法,一是使用基于正态分布的不同统计分位数分割冠层温度,并基于不同统计分位数上的平均冠层温度计算CWSI(记为CWSI_(TcF%))。二是基于冠层温度方差(canopy temperature variance,V_(ar)),将玉米冠层数据分为4个区间:区间Ⅰ,T_(c)≤40,V_(ar)≤10;区间Ⅱ,T_(c)≤40,10<V_(ar)≤20;区间Ⅲ,35<T_(c)<45,Var>20;区间Ⅳ,40<T_(c)<50,0<V_(ar)≤20,并在各自区间上选择最敏感的统计分位数计算CWSI(记为CWSI_(n))。研究结果表明:1)利用2020年和2021年两年数据计算的CWSI_(n)与作物生理指标(气孔导度G_(s)、净光合速率P_(n)、蒸腾速率T_(r))间的决定系数R2分别为0.72、0.52、0.62,nRMSE分别为23.96%、24.06%、25.60%,模型拟合精度高于原始CWSI(R^(2)分别为0.73、0.34、0.46,nRMSE分别为23.69%、28.27%、30.21%),但与CWSITcF%差别不大(R2分别为0.74、0.54、0.61,nRMSE分别为22.87%、23.74%、25.61%);2)虽然CWSI_(TcF%)能提高诊断作物水分胁迫的精度,但最敏感的冠层温度区间在年际间相差较大(2020,61.17%;2021,49.38%;两年数据,83.51%),而CWSI_(n)稳定性更高(与生理指标间的nRMSE分别为:2020年16.60%、27.37%、28.49%;2021年21.60%、18.95%、22.64%)。因此,综合来看CWSI_(n)可以更加精确地监测作物水分胁迫,利用该改进方法可为无人机遥感精准监测作物水分胁迫状况提供参考。 展开更多
关键词 无人机 热红外 作物水分胁迫指数 冠层温度 方差 生理指标
下载PDF
基于无人机-卫星遥感升尺度的土壤水分监测模型研究 被引量:3
3
作者 马仪 黄组桂 +3 位作者 贾江栋 罗林育 王爽 姚一飞 《农业机械学报》 EI CAS CSCD 北大核心 2023年第6期307-318,共12页
土壤水分是研究土壤-植物-大气循环系统中能量与物质交换的关键,通过尺度转换方法将无人机遥感数据上推以修正卫星数据,可有效改善卫星遥感反演模型精度。本文以河套灌区为研究对象,分别采用重采样和TsHARP升尺度法,引入多元线性回归(M... 土壤水分是研究土壤-植物-大气循环系统中能量与物质交换的关键,通过尺度转换方法将无人机遥感数据上推以修正卫星数据,可有效改善卫星遥感反演模型精度。本文以河套灌区为研究对象,分别采用重采样和TsHARP升尺度法,引入多元线性回归(MLR)、BP神经网络(BPNN)和支持向量机(SVM)算法构建不同土壤深度下无人机-卫星升尺度土壤含水率反演模型。研究结果表明:重采样升尺度法在不同土壤深度下模型整体精度由高到低依次为SVM、MLR、BPNN,其中在土壤深度0~60 cm下采用SVM模型最优,R2达到0.571,RMSE为0.022%;TsHARP升尺度法在不同土壤深度下模型整体精度由高到低依次为BPNN、SVM、MLR,其中在土壤深度0~60 cm下采用BPNN模型最优,R2达到0.829,RMSE为0.015%。与升尺度修正前对应土壤深度模型对比,两种升尺度方法均能明显提高卫星遥感对土壤含水率的反演精度,但TsHARP升尺度法整体优于重采样法;重采样法的R2由0.413提升至0.571,RMSE由0.026%降至0.022%(降幅15.4%);TsHARP升尺度法的R2由0.428提升至0.829,RMSE由0.025%降至0.015%(降幅40.0%)。本研究可为大尺度范围灌区土壤水分高精度监测提供理论和技术支撑。 展开更多
关键词 土壤水分 升尺度 高分一号卫星 无人机 监测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部