期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
样本不平衡下的海杂波弱目标分类研究 被引量:3
1
作者 时艳玲 刘子鹏 贾邦玲 《信号处理》 CSCD 北大核心 2021年第9期1781-1789,共9页
现有的海面弱目标分类算法难以应对单域特征造成特征混叠问题,且存在海杂波和目标样本不平衡的问题。因此,本文研究了一种样本不平衡下的海杂波弱目标分类的方法。首先,从多域提取特征,其中包括从极化域提取球体、双平面和螺旋散射的相... 现有的海面弱目标分类算法难以应对单域特征造成特征混叠问题,且存在海杂波和目标样本不平衡的问题。因此,本文研究了一种样本不平衡下的海杂波弱目标分类的方法。首先,从多域提取特征,其中包括从极化域提取球体、双平面和螺旋散射的相对功率特征,从时域提取相对平均幅度特征、和从频域提取非广延熵特征。然后对比分析了海杂波和目标的多域特征之间的区别。由于海杂波特征的样本数目远大于目标样本数目,且海杂波特征具有局部聚集性,为了解决这种样本不平衡以及特征混叠所导致的分类偏差问题,本文设计了一种K均值和支持向量机(SVM)结合的分类器。该分类器主要通过将海杂波样本进行K均值动态聚类,将原本属于一类的海杂波样本分成多类,缓解样本非平衡现象,然后再将多类海杂波样本与目标样本进行SVM分类。经过实测数据验证,该方法具有良好的分类性能。 展开更多
关键词 目标分类 K均值聚类 支持向量机 极化分解
下载PDF
基于卷积神经网络的雷达工作模式识别
2
作者 贾邦玲 时艳玲 姜磊 《科技创新与应用》 2023年第22期15-18,共4页
该文针对不同雷达工作模式的信号特征,提出一种基于卷积神经网络(convolutional neural network,CNN)的雷达工作模式识别方法。不同工作模式下的雷达信号的脉冲宽度、脉冲重复周期、脉内调制样式和数据率等特征均有所不同,所以该文利用... 该文针对不同雷达工作模式的信号特征,提出一种基于卷积神经网络(convolutional neural network,CNN)的雷达工作模式识别方法。不同工作模式下的雷达信号的脉冲宽度、脉冲重复周期、脉内调制样式和数据率等特征均有所不同,所以该文利用这4个特征参数构建1个图像矩阵,再提取方向梯度直方图(Histogram of Oriented Gradient,HOG)的特征,送入CNN进行雷达工作模式识别。仿真结果表明,该识别方法有较高的识别准确率。 展开更多
关键词 雷达 工作模式识别 卷积神经网络 方向梯度直方图 识别准确率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部