期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合多注意力机制与时空图卷积网络的人体动作识别方法 被引量:16
1
作者 李炫烨 郝兴伟 +1 位作者 贾金公 周元峰 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第7期1055-1063,共9页
人体动作识别因其难以结合时空域信息成为计算机视觉方向中一项具有挑战性的任务.提出一个多注意力时空图卷积网络,其核心思想是根据时间序列信息和人体骨架的自然连接构建一个连通图,然后利用具有多注意力机制的时空图卷积网络自动地... 人体动作识别因其难以结合时空域信息成为计算机视觉方向中一项具有挑战性的任务.提出一个多注意力时空图卷积网络,其核心思想是根据时间序列信息和人体骨架的自然连接构建一个连通图,然后利用具有多注意力机制的时空图卷积网络自动地学习空间和时间特征并且优化该连通图,最后实现对人体动作的预测.引入图注意力模块,模型构建的图的拓扑结构在初始化后会随着网络训练的过程进行优化,最终得到更适合表达人体动作的拓扑结构.此外,加入通道注意力模块,使网络能够更加注意相对重要的通道信息,从而提取更有效描述动作的特征.在公认的大型数据集NTU-RGBD和Kinetics上进行了大量的实验,结果表明该方法具有更高的识别准确率. 展开更多
关键词 动作识别 图卷积网络 三维人体骨架
下载PDF
面向人体动作识别的局部特征融合时间卷积网络 被引量:11
2
作者 宋震 周元峰 +2 位作者 贾金公 辛士庆 刘毅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第3期418-424,共7页
针对3D人体骨架序列动作识别这一问题,提出了一种结合了局部特征融合的时间卷积网络方法.首先,对一个动作中整个骨架序列的所有关节点的空间位置变化进行建模,提取其骨架序列的全局空间特征;然后,根据人体关节点及连接关系的拓扑结构将... 针对3D人体骨架序列动作识别这一问题,提出了一种结合了局部特征融合的时间卷积网络方法.首先,对一个动作中整个骨架序列的所有关节点的空间位置变化进行建模,提取其骨架序列的全局空间特征;然后,根据人体关节点及连接关系的拓扑结构将全局空间特征划分为人体局部空间特征,并将得到的局部空间特征分别作为对应TCN的输入,进而学习各关节内部的特征关系;最后,对输出的各部分特征向量进行融合,学习各部分关节之间的协作关系,从而完成对动作的识别.运用该方法在当前最具挑战性的数据集NTU-RGB+D进行了分类识别实验,结果表明,与已有的基于CNN,LSTM以及TCN的方法相比,其在对象交叉(cross-subject)和视图交叉(cross-view)的分类准确率上分别提高到了79.5%和84.6%. 展开更多
关键词 动作识别 时间卷积网络 3D人体骨架
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部