期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于照度图引导的低照度图像增强网络 被引量:1
1
作者 黄淑英 黎为 +2 位作者 杨勇 万伟国 赖厚增 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期92-101,共10页
在低照度环境下采集的图像,由于光照的不均匀性,存在能见度差、对比度低和颜色失真等问题.现有的大多数低照度图像增强方法存在过增强或欠增强的现象,影响视觉感知和后续目标检测任务.针对上述问题,提出一种基于照度图引导的低照度图像... 在低照度环境下采集的图像,由于光照的不均匀性,存在能见度差、对比度低和颜色失真等问题.现有的大多数低照度图像增强方法存在过增强或欠增强的现象,影响视觉感知和后续目标检测任务.针对上述问题,提出一种基于照度图引导的低照度图像增强网络.首先根据低照度图像的灰度分布特点构造对应的照度图,度量低照度图像不同区域块的明暗程度;然后利用照度图作为网络增强的引导图,与低照度图像一起送入图像增强网络来获得增强后的图像.为了解决训练数据不足的问题,提出一种基于内循环和概率旋转的数据增强方法来扩充训练数据样本的数量和多样性;同时,针对目前图像增强方法中普遍存在照度不均匀的问题,基于直方图匹配的思想构建一种直方图损失函数,约束并指导网络的训练.在合成数据集LOL和真实图像上的实验结果表明,所提网络在低照度图像增强方面获得了更好的主观视觉效果;与经典的RetinexNet方法相比,所提方法在PSNR和SSIM客观定量指标上分别提高了7.905 dB和0.328;该网络对后续目标检测任务的检测率可提高10.17%~17.19%. 展开更多
关键词 低照度图像增强 照度图引导 直方图损失函数 概率旋转增强 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部