CFSFDP算法(Clustering by Fast Search and Find of Density Peaks)具有简单高效且需要较少参数的优点,但存在需要人为确定截断距离参数和聚类中心的不足。为克服以上不足,提出了自适应快速搜索密度峰值聚类算法。该算法针对截断距离...CFSFDP算法(Clustering by Fast Search and Find of Density Peaks)具有简单高效且需要较少参数的优点,但存在需要人为确定截断距离参数和聚类中心的不足。为克服以上不足,提出了自适应快速搜索密度峰值聚类算法。该算法针对截断距离参数的确定问题,构造关于截断距离参数的局部密度信息熵,通过最小化信息熵自适应地确定截断距离参数;针对聚类中心的确定问题,利用从非聚类中心到聚类中心数据点局部密度和距离的乘积,存在明显跳跃这一特征确定阈值,从而能自动确定聚类中心。实验结果表明该算法能够取得较好的聚类性能,且无需人为确定截断距离参数和聚类中心。展开更多
文摘CFSFDP算法(Clustering by Fast Search and Find of Density Peaks)具有简单高效且需要较少参数的优点,但存在需要人为确定截断距离参数和聚类中心的不足。为克服以上不足,提出了自适应快速搜索密度峰值聚类算法。该算法针对截断距离参数的确定问题,构造关于截断距离参数的局部密度信息熵,通过最小化信息熵自适应地确定截断距离参数;针对聚类中心的确定问题,利用从非聚类中心到聚类中心数据点局部密度和距离的乘积,存在明显跳跃这一特征确定阈值,从而能自动确定聚类中心。实验结果表明该算法能够取得较好的聚类性能,且无需人为确定截断距离参数和聚类中心。