采用支撑液膜技术建立了进料相、膜相、反萃取相三相体系,实现了对洁霉素的分离提纯。该体系采用了洁霉素+异构烷烃(Isopar L)+HCl的反应体系,验证了进料浓度(Cbf)、进料相溶液pH、反萃取相溶液pH、萃取剂组成等因素对分配系数(D)的影...采用支撑液膜技术建立了进料相、膜相、反萃取相三相体系,实现了对洁霉素的分离提纯。该体系采用了洁霉素+异构烷烃(Isopar L)+HCl的反应体系,验证了进料浓度(Cbf)、进料相溶液pH、反萃取相溶液pH、萃取剂组成等因素对分配系数(D)的影响。同时,优化了膜组件实现萃取实验的操作条件,根据传质过程建立了数学模型。结果显示:当洁霉素Cbf为11.9 mmol/L、Isopar L体积分数(VF)为80%、进料相pH为10.1、反萃取相pH为1.2时,D最大为2.34。确定了膜组件操作条件为:管程流量Vf=520 m L/min,壳程流量Vs=500 m L/min。根据所建的数学模型分析了各部分传质阻力,其中管程传质阻力为6.7×10~5s/m,壳程传质阻力为3.7×10~5s/m,跨膜传质阻力为2.7×10~6s/m,跨膜传质阻力起主要作用。展开更多
文摘采用支撑液膜技术建立了进料相、膜相、反萃取相三相体系,实现了对洁霉素的分离提纯。该体系采用了洁霉素+异构烷烃(Isopar L)+HCl的反应体系,验证了进料浓度(Cbf)、进料相溶液pH、反萃取相溶液pH、萃取剂组成等因素对分配系数(D)的影响。同时,优化了膜组件实现萃取实验的操作条件,根据传质过程建立了数学模型。结果显示:当洁霉素Cbf为11.9 mmol/L、Isopar L体积分数(VF)为80%、进料相pH为10.1、反萃取相pH为1.2时,D最大为2.34。确定了膜组件操作条件为:管程流量Vf=520 m L/min,壳程流量Vs=500 m L/min。根据所建的数学模型分析了各部分传质阻力,其中管程传质阻力为6.7×10~5s/m,壳程传质阻力为3.7×10~5s/m,跨膜传质阻力为2.7×10~6s/m,跨膜传质阻力起主要作用。