Van der Waerden的“代数学”一书,对欧氏环是这样定义的: 设R是一个交换环,其中每一个非零元素a对应一个非负整数g(a),具有性质 1、对于a≠0,b≠0,有ab≠0且g(ab)≥g(a)。 2、(带余除法)对于任意二个元素a,b其中b≠0,有a=qb+r。这里r=0...Van der Waerden的“代数学”一书,对欧氏环是这样定义的: 设R是一个交换环,其中每一个非零元素a对应一个非负整数g(a),具有性质 1、对于a≠0,b≠0,有ab≠0且g(ab)≥g(a)。 2、(带余除法)对于任意二个元素a,b其中b≠0,有a=qb+r。这里r=0,或g(r)<g(a)。 则称R为欧几里得环。展开更多