We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of num...We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system.展开更多
In this paper a new dynamic system with integer and fractional order is investigated. It is shown that determining the effect of quadratic coefficients to the systematic structure can be converted to determining that ...In this paper a new dynamic system with integer and fractional order is investigated. It is shown that determining the effect of quadratic coefficients to the systematic structure can be converted to determining that of coefficients of the linear part. Under some parametric conditions, the system can produce chaotic attractors similar as Lorenz attractor. A constructive theorem is proposed for generalized synchronization related to the fractional-order chaotic system and an application of this new system is demonstrated.展开更多
基金Supported by the National Nature Science Foundation of China under Grant No 70271068.
文摘We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system.
基金Supported by the National Nature Science Foundation of China under Grant No.60674059
文摘In this paper a new dynamic system with integer and fractional order is investigated. It is shown that determining the effect of quadratic coefficients to the systematic structure can be converted to determining that of coefficients of the linear part. Under some parametric conditions, the system can produce chaotic attractors similar as Lorenz attractor. A constructive theorem is proposed for generalized synchronization related to the fractional-order chaotic system and an application of this new system is demonstrated.