期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于混合尺度健康因子的LSTM-Transformer锂电池寿命预测
1
作者
赵昱坡
黄伟
张剑飞
《电子测量技术》
北大核心
2024年第11期112-122,共11页
为提高锂电池剩余使用寿命(RUL)预测的精度,提出基于混合尺度健康因子的集成模型进行RUL预测。针对电池退化数据噪声大,数据量少和非线性特点捕捉不全的问题,首先提出奇异值分解(SVD)对电容信号处理,通过奇异值的能量分布优化变分模态分...
为提高锂电池剩余使用寿命(RUL)预测的精度,提出基于混合尺度健康因子的集成模型进行RUL预测。针对电池退化数据噪声大,数据量少和非线性特点捕捉不全的问题,首先提出奇异值分解(SVD)对电容信号处理,通过奇异值的能量分布优化变分模态分解(VMD)的最佳模态数,降噪重构出直接健康因子SR。提出一种幅度、相位双扰动(APP)的数据增强方法,依据SR数据分布变化,生成人工标记数据ESR,此ESR与电容相关系数均高于0.97。将SR、ESR结合GRA算法择取的3个间接健康因子,建立了更全面的混合尺度寿命特征信息;此外,为了避免单一模型预测的局限性,采用LSTM模型改进了Transformer结构中的解码器,引入新兴Optuna框架分析了影响模型预测精度的关键超参数并对它们进行了优化。最后通过NASA数据进行实验,并与RNN、LSTM、Transformer以及现有模型方法进行比较,结果证明RMSE控制在2.39%以内,MAE在1.59%以内,且预测性能受预测起点的影响小,稳定性更高,95%置信区间更窄。
展开更多
关键词
锂离子电池
混合尺度特征提取
LSTM-Transformer模型
APP数据增强
Optuna框架
下载PDF
职称材料
题名
基于混合尺度健康因子的LSTM-Transformer锂电池寿命预测
1
作者
赵昱坡
黄伟
张剑飞
机构
上海电力大学自动化工程学院
华能玉环电厂
出处
《电子测量技术》
北大核心
2024年第11期112-122,共11页
基金
国家电网公司华东分部科技项目(H2021-111)资助。
文摘
为提高锂电池剩余使用寿命(RUL)预测的精度,提出基于混合尺度健康因子的集成模型进行RUL预测。针对电池退化数据噪声大,数据量少和非线性特点捕捉不全的问题,首先提出奇异值分解(SVD)对电容信号处理,通过奇异值的能量分布优化变分模态分解(VMD)的最佳模态数,降噪重构出直接健康因子SR。提出一种幅度、相位双扰动(APP)的数据增强方法,依据SR数据分布变化,生成人工标记数据ESR,此ESR与电容相关系数均高于0.97。将SR、ESR结合GRA算法择取的3个间接健康因子,建立了更全面的混合尺度寿命特征信息;此外,为了避免单一模型预测的局限性,采用LSTM模型改进了Transformer结构中的解码器,引入新兴Optuna框架分析了影响模型预测精度的关键超参数并对它们进行了优化。最后通过NASA数据进行实验,并与RNN、LSTM、Transformer以及现有模型方法进行比较,结果证明RMSE控制在2.39%以内,MAE在1.59%以内,且预测性能受预测起点的影响小,稳定性更高,95%置信区间更窄。
关键词
锂离子电池
混合尺度特征提取
LSTM-Transformer模型
APP数据增强
Optuna框架
Keywords
lithium-ion battery
hybrid scale feature extraction
LSTM-Transformer model
APP data augmentation
Optuna framework
分类号
TM912 [电气工程—电力电子与电力传动]
TN911 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于混合尺度健康因子的LSTM-Transformer锂电池寿命预测
赵昱坡
黄伟
张剑飞
《电子测量技术》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部