Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their d...Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.展开更多
基金supported by the Fundamental Research Funds for Central Universities' through Beihang Universitythe Queensland Government through the Q-CAS Collaborative Science Fund 2016 "Graphene-Based Thin Film Supercapacitors"
文摘Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.