The effect of grain morphology and precipitates on mechanical properties and corrosion behavior of two commercial 7 N01 alloys was studied using transmission electron microscopy(TEM) and scanning electron microscopy(S...The effect of grain morphology and precipitates on mechanical properties and corrosion behavior of two commercial 7 N01 alloys was studied using transmission electron microscopy(TEM) and scanning electron microscopy(SEM) equipped with electron backscatter diffraction(EBSD). Results showed that the recrystallization degree of the outer surface of 7 N01-I alloy was lower than that of 7 N01-II alloy. The main strengthening precipitates of two alloys were mainly η’ phases. The grain boundary precipitates(GBPs) of 7 N01-I alloy distributed discontinuously, while those of 7 N01-II alloy distributed continuously. The strength of two 7 N01 alloys was similar, but the maximum corrosion depth of 7 N01-I alloy was less than that of 7 N01-II alloy, because the discontinuous GBPs and the lower recrystallization degree of outer surface of 7 N01-I alloy were favorable for improving corrosion behavior. Different models of strengthening mechanism were discussed, and the corrosion behavior was correlated with microstructure.展开更多
基金the National Key Research and Development Program of China (Nos. 2021YFB3704204, 2021YFB3700902, 2021YFB3704205)Beijing Natural Science Foundation, China (No. 2202009)+2 种基金the National Natural Science Foundation of China (No. 51621003)Basic Research Program of Jiangsu Province (Natural Science Foundation), China (No. BK20191148)Beijing Lab Project for Modern Transportation Metallic Materials and Processing Technology and Jiangsu Key Laboratory for Clad Materials, China (No. BM2014006)。
文摘The effect of grain morphology and precipitates on mechanical properties and corrosion behavior of two commercial 7 N01 alloys was studied using transmission electron microscopy(TEM) and scanning electron microscopy(SEM) equipped with electron backscatter diffraction(EBSD). Results showed that the recrystallization degree of the outer surface of 7 N01-I alloy was lower than that of 7 N01-II alloy. The main strengthening precipitates of two alloys were mainly η’ phases. The grain boundary precipitates(GBPs) of 7 N01-I alloy distributed discontinuously, while those of 7 N01-II alloy distributed continuously. The strength of two 7 N01 alloys was similar, but the maximum corrosion depth of 7 N01-I alloy was less than that of 7 N01-II alloy, because the discontinuous GBPs and the lower recrystallization degree of outer surface of 7 N01-I alloy were favorable for improving corrosion behavior. Different models of strengthening mechanism were discussed, and the corrosion behavior was correlated with microstructure.