Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of s...Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.展开更多
文摘Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.