An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT...An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61- butyricacid methyl ester (PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing (vapor drying device) and only a normal thermal annealing process (control device), respectively. Their power conversion efficiencies (PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB932801)the New Teachers’Fund for Doctor Stations,Ministry of Education,China(Grant No.20112216120008)
文摘An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61- butyricacid methyl ester (PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing (vapor drying device) and only a normal thermal annealing process (control device), respectively. Their power conversion efficiencies (PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.