期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的微博疫情舆情文本情感分析
1
作者
吴加辉
加云岗
+4 位作者
王志晓
张九龙
闫文耀
高昂
车少鹏
《计算机技术与发展》
2024年第7期175-183,共9页
舆论情感分析重点研究公众对于公共事件的情感偏向,其中涉及公共卫生事件的舆论会直接影响社会稳定,所以对于微博的情感分析尤为重要。该文采取有关疫情方面的文本数据集,使用RoBERTa和BiGRU以及双层Attention结合的RoBERTa-BDA(RoBERTa...
舆论情感分析重点研究公众对于公共事件的情感偏向,其中涉及公共卫生事件的舆论会直接影响社会稳定,所以对于微博的情感分析尤为重要。该文采取有关疫情方面的文本数据集,使用RoBERTa和BiGRU以及双层Attention结合的RoBERTa-BDA(RoBERTa-BiGRU-Double Attention)模型作为整体结构。首先使用RoBERTa获取了蕴含文本上下文信息的词嵌入表示,其次使用BiGRU得到字符表示,然后使用注意力机制计算各个字符对于全局的影响,再使用BiGRU得到句子表示,最后使用Attention机制计算出每个字符对于其所在的句子的权重占比,得出全文的文本表示,并通过softmax函数对其进行情感分析。为了验证RoBERTa-BDA模型的有效性,设计三种实验,在不同词向量对比实验中,RoBERTa对比BERT中Macro F1和Micro F1值提高了0.42百分点和0.84百分点,在不同特征提取层模型对比实验中,BiGRU-Double Attention对比BiGRU-Attention提高了3.62百分点和1.34百分点,在跨平台对比实验中,RoBERTa-BDA在贴吧平台的Macro F1和Micro F1对比微博平台仅仅降低1.29百分点和2.88百分点。
展开更多
关键词
RoBERTa
情感分析
特征提取
词向量
注意力机制
BiGRU
下载PDF
职称材料
题名
基于深度学习的微博疫情舆情文本情感分析
1
作者
吴加辉
加云岗
王志晓
张九龙
闫文耀
高昂
车少鹏
机构
西安工程大学计算机科学学院
西安理工大学计算机科学与工程学院
延安大学西安创新学院
国家卫星气象中心
清华大学新闻与传播学院
出处
《计算机技术与发展》
2024年第7期175-183,共9页
基金
教育部人文社会科学研究青年基金(16YJCZH109)
2022年陕西省科技计划项目之区域创新能力引导计划(2022QFY01-17)
智慧城市多模态场景感知关键技术研究以及应用(2023JH-RGZNGG-0011)。
文摘
舆论情感分析重点研究公众对于公共事件的情感偏向,其中涉及公共卫生事件的舆论会直接影响社会稳定,所以对于微博的情感分析尤为重要。该文采取有关疫情方面的文本数据集,使用RoBERTa和BiGRU以及双层Attention结合的RoBERTa-BDA(RoBERTa-BiGRU-Double Attention)模型作为整体结构。首先使用RoBERTa获取了蕴含文本上下文信息的词嵌入表示,其次使用BiGRU得到字符表示,然后使用注意力机制计算各个字符对于全局的影响,再使用BiGRU得到句子表示,最后使用Attention机制计算出每个字符对于其所在的句子的权重占比,得出全文的文本表示,并通过softmax函数对其进行情感分析。为了验证RoBERTa-BDA模型的有效性,设计三种实验,在不同词向量对比实验中,RoBERTa对比BERT中Macro F1和Micro F1值提高了0.42百分点和0.84百分点,在不同特征提取层模型对比实验中,BiGRU-Double Attention对比BiGRU-Attention提高了3.62百分点和1.34百分点,在跨平台对比实验中,RoBERTa-BDA在贴吧平台的Macro F1和Micro F1对比微博平台仅仅降低1.29百分点和2.88百分点。
关键词
RoBERTa
情感分析
特征提取
词向量
注意力机制
BiGRU
Keywords
RoBERTa
sentiment analysis
feature extraction
word vectors
attention mechanism
BiGRU
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的微博疫情舆情文本情感分析
吴加辉
加云岗
王志晓
张九龙
闫文耀
高昂
车少鹏
《计算机技术与发展》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部