期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双特征融合引导的深度图像超分辨率重建网络
被引量:
1
1
作者
耿浩文
王宇
辛彦玲
《激光与光电子学进展》
CSCD
北大核心
2024年第8期391-398,共8页
针对彩色图像引导的深度图像超分辨率重建算法中存在的纹理转移和深度流失的问题,提出一种基于双特征融合引导的深度图像超分辨率重建网络(DF-Net)。为了充分利用深度和强度特征的关联性,在网络模型的深度恢复重建部分采用双通道融合模...
针对彩色图像引导的深度图像超分辨率重建算法中存在的纹理转移和深度流失的问题,提出一种基于双特征融合引导的深度图像超分辨率重建网络(DF-Net)。为了充分利用深度和强度特征的关联性,在网络模型的深度恢复重建部分采用双通道融合模块(DCM)和双特征引导重建模块(DGM)。利用输入金字塔结构提取深度信息和强度信息的多尺度特征:DCM基于通道注意力机制对深度特征和强度特征进行通道间的特征融合与增强;DGM将深度、强度特征自适应选择融合后实现重建的双特征引导,增加了深度特征的引导作用,改善了纹理转移和深度流失的问题。实验结果表明,所提方法的峰值信噪比(PSNR)和均方根误差(RMSE)优于RMRF、JBU和Depth-Net等方法,尤其4×超分辨率重建结果的PSNR值比其他方法平均提升6.79 dB,RMSE平均下降0.94,取得了较好的深度图像超分辨率重建效果。
展开更多
关键词
图像处理
图像超分辨率重建
卷积神经网络
深度图像
特征融合
通道注意力
原文传递
题名
基于双特征融合引导的深度图像超分辨率重建网络
被引量:
1
1
作者
耿浩文
王宇
辛彦玲
机构
长春理工大学电子信息工程学院
出处
《激光与光电子学进展》
CSCD
北大核心
2024年第8期391-398,共8页
基金
吉林省自然科学基金(20210101180JC)。
文摘
针对彩色图像引导的深度图像超分辨率重建算法中存在的纹理转移和深度流失的问题,提出一种基于双特征融合引导的深度图像超分辨率重建网络(DF-Net)。为了充分利用深度和强度特征的关联性,在网络模型的深度恢复重建部分采用双通道融合模块(DCM)和双特征引导重建模块(DGM)。利用输入金字塔结构提取深度信息和强度信息的多尺度特征:DCM基于通道注意力机制对深度特征和强度特征进行通道间的特征融合与增强;DGM将深度、强度特征自适应选择融合后实现重建的双特征引导,增加了深度特征的引导作用,改善了纹理转移和深度流失的问题。实验结果表明,所提方法的峰值信噪比(PSNR)和均方根误差(RMSE)优于RMRF、JBU和Depth-Net等方法,尤其4×超分辨率重建结果的PSNR值比其他方法平均提升6.79 dB,RMSE平均下降0.94,取得了较好的深度图像超分辨率重建效果。
关键词
图像处理
图像超分辨率重建
卷积神经网络
深度图像
特征融合
通道注意力
Keywords
image processing
image superresolution reconstruction
convolution neural network
depth image
feature fusion
channel attention
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于双特征融合引导的深度图像超分辨率重建网络
耿浩文
王宇
辛彦玲
《激光与光电子学进展》
CSCD
北大核心
2024
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部