A numerical model is proposed to simulate the internal wave propagation in a continuously density-stratified ocean, and in the model, the momentum equations are derived from the Euler equations on the basis of the Bou...A numerical model is proposed to simulate the internal wave propagation in a continuously density-stratified ocean, and in the model, the momentum equations are derived from the Euler equations on the basis of the Boussinesq approximation. The governing equations, including the continuity equation and the momentum equations, are discretized with the finite volume method. The advection terms are treated with the total variation diminishing (TVD) scheme, and the SIMPLE algorithm is employed to solve the discretized governing equations. After the modeling test, the suitable TVD scheme is selected. The SIMPLE algorithm is modified to simplify the calculation process, and it is easily made to adapt to the TVD scheme. The Sommerfeld's radiation condition combined with a sponge layer is adopted at the outflow boundary. In the water flume with a constant water depth, the numerical results are compared to the analytical solutions with a good agreement. The numerical simulations are carried out for a wave flume with a submerged dike, and the model results are analyzed in detail. The results show that the present numerical model can effectively simulate the propagation of the internal wave.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51079082)the Nature Science Foundation of Shanghai City(Grant No.14ZR1419600)+1 种基金the Implementation Project of Graduate Education Innovation Plan of Shanghai City(the second batch,Grant No.20131129)the Top Discipline Project of Shanghai Municipal Education Commission
文摘A numerical model is proposed to simulate the internal wave propagation in a continuously density-stratified ocean, and in the model, the momentum equations are derived from the Euler equations on the basis of the Boussinesq approximation. The governing equations, including the continuity equation and the momentum equations, are discretized with the finite volume method. The advection terms are treated with the total variation diminishing (TVD) scheme, and the SIMPLE algorithm is employed to solve the discretized governing equations. After the modeling test, the suitable TVD scheme is selected. The SIMPLE algorithm is modified to simplify the calculation process, and it is easily made to adapt to the TVD scheme. The Sommerfeld's radiation condition combined with a sponge layer is adopted at the outflow boundary. In the water flume with a constant water depth, the numerical results are compared to the analytical solutions with a good agreement. The numerical simulations are carried out for a wave flume with a submerged dike, and the model results are analyzed in detail. The results show that the present numerical model can effectively simulate the propagation of the internal wave.