期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s的自动扶梯乘客异常行为实时检测算法 被引量:1
1
作者 王源鹏 万海斌 +3 位作者 黄凯 迟兆展 张金旗 黄智星 《激光与光电子学进展》 CSCD 北大核心 2024年第8期201-208,共8页
为了实时检测乘客的异常行为,提出一种基于YOLOv5s算法的轻量化自动扶梯乘客异常行为实时检测算法YOLO-STE。首先在主干网络中引入轻量化ShuffleNetV2网络,以减少主干网络的参数量和计算量;其次在骨干网络的最后一层引入基于Transforme... 为了实时检测乘客的异常行为,提出一种基于YOLOv5s算法的轻量化自动扶梯乘客异常行为实时检测算法YOLO-STE。首先在主干网络中引入轻量化ShuffleNetV2网络,以减少主干网络的参数量和计算量;其次在骨干网络的最后一层引入基于Transformer编码的C3TR模块,以更好地提取丰富的全局信息和融合不同尺度的特征;最后在YOLOv5s的特征融合网络中嵌入SE(Squeeze-and-excitation)注意力机制,以更好地关注主要信息,从而提高模型精度。自建数据集并进行实验,实验结果表明,相比于原YOLOv5s,改进算法的全类平均精度值(mAP)高出1.9百分点,达到了96.1%,模型大小减少了70.8%。并且在Jetson Nano硬件上部署测试所得,改进后的算法前传耗时比原YOLOv5s模型缩短了39.9%。通过对比改进前后的算法,后者能更好地实现对自动扶梯乘客异常行为的实时检测,从而可以更好地保障乘客乘梯安全。 展开更多
关键词 目标检测 轻量化 YOLOv5s ShuffleNetV2 C3TR模块 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部