期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合迭代式关系图匹配和属性语义嵌入的实体对齐方法
1
作者 迟棠 车超 《计算机科学》 CSCD 北大核心 2023年第S02期69-74,共6页
实体对齐是知识融合中的关键步骤,用于解决多源知识图谱中实体冗余、指代不明等问题。目前,大多数的实体对齐方法主要依赖于邻域网络,而忽略了关系间的连通以及属性信息,导致模型无法捕捉到复杂关系,额外信息也没有被充分利用。针对上... 实体对齐是知识融合中的关键步骤,用于解决多源知识图谱中实体冗余、指代不明等问题。目前,大多数的实体对齐方法主要依赖于邻域网络,而忽略了关系间的连通以及属性信息,导致模型无法捕捉到复杂关系,额外信息也没有被充分利用。针对上述问题,提出一种迭代式关系图匹配和属性语义嵌入的实体对齐方法,将〈头实体,关系,尾实体〉进行转置,生成〈头关系,实体,尾关系〉构建,与实体图相对应的关系图,接着利用注意力机制编码实体和关系表示,二者通过相互迭代,能够更好地表示实体,再融合属性表示最终判定两个实体是否对齐。实验结果表明,本模型在DBP15K 3个跨语言数据集中显著优于其他6种方法,相比于最好方法Hit@1指标提升了4%,证明了关系匹配和属性语义的有效性。 展开更多
关键词 知识图谱 实体对齐 图神经网络 关系匹配 属性语义
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部