期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN-GCN双流网络的高分辨率遥感影像场景分类 被引量:9
1
作者 邓培芳 徐科杰 黄鸿 《遥感学报》 EI CSCD 北大核心 2021年第11期2270-2282,共13页
高分辨率遥感影像具有复杂的几何结构和空间布局,传统的卷积神经网络的方法仅能提取场景图像中的全局特征,忽略了上下文的关系,导致特征的表达能力受限,制约了分类精度提高。针对此问题,本文提出一个面向高分辨率遥感影像场景分类的CNN-... 高分辨率遥感影像具有复杂的几何结构和空间布局,传统的卷积神经网络的方法仅能提取场景图像中的全局特征,忽略了上下文的关系,导致特征的表达能力受限,制约了分类精度提高。针对此问题,本文提出一个面向高分辨率遥感影像场景分类的CNN-GCN双流网络,该算法包含CNN流和GCN流两个模块。CNN流基于预训练DenseNet-121网络提取高分影像的全局特征;而GCN流采用由预训练VGGNet-16网络得到的卷积特征图构建邻接图,再通过GCN模型提取高分影像的上下文特征。最后,通过加权级联的方式有效地融合全局特征和上下文特征并利用线性分类器实现分类。本文选取AID、RSSCN7和NWPU-RESISC45共3个具有挑战性的数据集进行实验,得到的最高分类精度分别是97.14%、95.46%和94.12%,结果表明本文算法能够有效地表征场景并取得具有竞争力的分类结果。 展开更多
关键词 高分辨率影像 遥感场景分类 图神经网络 卷积神经网络 特征融合
原文传递
HSRS-SC:面向遥感场景分类的高光谱图像数据集 被引量:5
2
作者 徐科杰 邓培芳 黄鸿 《中国图象图形学报》 CSCD 北大核心 2021年第8期1809-1822,共14页
目的场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为... 目的场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1385幅图像,且空间分辨率较高(1 m),波长范围广(380~1050 nm),同时蕴含地物丰富的空间和光谱信息。结果为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。 展开更多
关键词 遥感 场景分类 高光谱图像 基准数据集 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部