期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于元学习和数据增强优化小样本模型泛化性能研究
1
作者
邓天翊
张耕培
《现代信息科技》
2024年第8期93-96,共4页
针对小样本模型泛化性能不足的问题,引入元学习机制构建强泛化性的数据分析模型。使用BP神经网络建立数据分析模型,并使用模型无关元学习算法MAML对模型进行优化。结果显示,相比于传统模型(如支持向量机和高斯过程方法),文中所建立模型...
针对小样本模型泛化性能不足的问题,引入元学习机制构建强泛化性的数据分析模型。使用BP神经网络建立数据分析模型,并使用模型无关元学习算法MAML对模型进行优化。结果显示,相比于传统模型(如支持向量机和高斯过程方法),文中所建立模型的泛化性能更好;针对MAML训练数据形式,引入数据增强方法增加训练数据数量,文中所建立模型的均方根误差、平均绝对百分比误差和决定系数分别为0.05、0.066和0.85,均优于其他预测模型。
展开更多
关键词
元学习
优化
小样本模型
泛化性
模型无关元学习算法
下载PDF
职称材料
题名
基于元学习和数据增强优化小样本模型泛化性能研究
1
作者
邓天翊
张耕培
机构
长江大学电子信息与电气工程学院
出处
《现代信息科技》
2024年第8期93-96,共4页
文摘
针对小样本模型泛化性能不足的问题,引入元学习机制构建强泛化性的数据分析模型。使用BP神经网络建立数据分析模型,并使用模型无关元学习算法MAML对模型进行优化。结果显示,相比于传统模型(如支持向量机和高斯过程方法),文中所建立模型的泛化性能更好;针对MAML训练数据形式,引入数据增强方法增加训练数据数量,文中所建立模型的均方根误差、平均绝对百分比误差和决定系数分别为0.05、0.066和0.85,均优于其他预测模型。
关键词
元学习
优化
小样本模型
泛化性
模型无关元学习算法
Keywords
Meta-Learning
optimization
small sample model
generalization
MAML
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于元学习和数据增强优化小样本模型泛化性能研究
邓天翊
张耕培
《现代信息科技》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部