针对锂电池荷电状态(State Of Charge,SOC)估计时常用的整数阶等效电路模型无法精准反映电池极化反应和提高在噪声干扰下全生命周期SOC的估计准确度问题,在二阶RC等效电路模型的基础上建立分数阶模型,并采用遗传(GA)算法对其进行参数辨...针对锂电池荷电状态(State Of Charge,SOC)估计时常用的整数阶等效电路模型无法精准反映电池极化反应和提高在噪声干扰下全生命周期SOC的估计准确度问题,在二阶RC等效电路模型的基础上建立分数阶模型,并采用遗传(GA)算法对其进行参数辨识,从而增强参数辨识的鲁棒性。最后在传统的无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法的基础上引入了多新息理论,提出了一种基于分数阶多新息无迹卡尔曼滤波(Fractional Order Multi Innovation Unscented Kalman Filtering,FOMIUKF)算法来实现对锂电池SOC的实时估计,最后通过搭建仿真模型验证了基于GA分数阶锂电池等效模型的准确性和可靠性,并进行了基于分数阶无迹卡尔曼滤波(Fractional Order Unscented Kalman Filtering,FOUKF)算法、FOMIUKF算法的锂电池SOC估计对比分析,发现FOMIUKF算法估计准确度更高,其估计误差仅为1%。展开更多
文摘针对锂电池荷电状态(State Of Charge,SOC)估计时常用的整数阶等效电路模型无法精准反映电池极化反应和提高在噪声干扰下全生命周期SOC的估计准确度问题,在二阶RC等效电路模型的基础上建立分数阶模型,并采用遗传(GA)算法对其进行参数辨识,从而增强参数辨识的鲁棒性。最后在传统的无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法的基础上引入了多新息理论,提出了一种基于分数阶多新息无迹卡尔曼滤波(Fractional Order Multi Innovation Unscented Kalman Filtering,FOMIUKF)算法来实现对锂电池SOC的实时估计,最后通过搭建仿真模型验证了基于GA分数阶锂电池等效模型的准确性和可靠性,并进行了基于分数阶无迹卡尔曼滤波(Fractional Order Unscented Kalman Filtering,FOUKF)算法、FOMIUKF算法的锂电池SOC估计对比分析,发现FOMIUKF算法估计准确度更高,其估计误差仅为1%。