We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown...We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.展开更多
文摘We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.