期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合注意力机制的人脸表情识别研究 被引量:5
1
作者 史浩 邢瑜航 陈炼 《微电子学与计算机》 2022年第3期34-40,共7页
针对传统卷积神经网络在表情特征提取阶段容易丢失大量有用信息,无法提取到高判别性表情特征,从而导致表情识别率低的问题,提出一种基于多尺度特征融合注意力机制的人脸表情识别方法.首先,采用VGGNet16来提取卷积特征.为了避免表情特征... 针对传统卷积神经网络在表情特征提取阶段容易丢失大量有用信息,无法提取到高判别性表情特征,从而导致表情识别率低的问题,提出一种基于多尺度特征融合注意力机制的人脸表情识别方法.首先,采用VGGNet16来提取卷积特征.为了避免表情特征信息的丢失,将网络中不同层次卷积层的输出特征图进行多尺度特征融合,引入上下文信息的同时提取更加丰富的表情特征信息;为了能够着重关注关键表情特征,在网络中引入了注意力机制.该机制利用分组卷积操作对通道注意力模块进行改进,学习不同通道的权重信息,获取注意力特征图,增强特征的表达能力,抑制冗余信息的影响.为了进一步提高提取到表情特征的可判别性,引入孤岛损失函数,并与Softmax分类损失函数联合使用构成新的损失函数.最后,由于对全连接层进行了删减.为防止网络出现过拟合问题,在卷积层引入了DropBlock策略.实验结果表明,该模型在Fer2013和CK+数据集上分别取得了73.32%和97.40%的平均准确率. 展开更多
关键词 计算机视觉 深度学习 人脸表情识别 特征提取 多尺度特征融合 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部