基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5(YOLOv5)的...基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5(YOLOv5)的网络架构中引入Selective Kernel Networks(SKNet)注意力模块,提出一种新的SK-YOLOv5网络,增强网络对多尺度复杂海洋目标的特征提取和自适应能力。经对比实验测试,在相同的海洋目标数据集上,改进后的网络比原网络整体检测及分类准确率提升了约9%。展开更多
为解决实时分析处理的海洋Argo浮标剖面观测数据特有的数据密度较高、快速响应且需要识别任意形状簇等问题,提出了一种可通过单次扫描数据集进行有效处理的低复杂度聚类算法DBIRCH(Density-Based Balanced Iterative Reducing and Clust...为解决实时分析处理的海洋Argo浮标剖面观测数据特有的数据密度较高、快速响应且需要识别任意形状簇等问题,提出了一种可通过单次扫描数据集进行有效处理的低复杂度聚类算法DBIRCH(Density-Based Balanced Iterative Reducing and Clustering Using Hierarchies)。该算法通过使用新引入的参数密度阈值修正因子,动态的更新限制CF(Clustering Feature)树生长的约束系数子空间阈值,同时结合密度关联思想在不同邻域内多次建立CF树且合并,最终以核心CF树子节点为聚类结果输出,避免了BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)算法对参数的过度依赖,同时因能处理任意形状簇从而提升了数据处理的整体鲁棒性,提高了处理Argo剖面监测数据的时效性和算法的整体吞吐速度。为测试算法的综合性能,使用真实Argo浮标剖面实时监测数据集,并根据不同的参数对算法做出多组对比实验,同时使用不同评价指标对算法从运行时间和聚类准确率上进行综合评估,从全局角度分析该算法在DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、BIRCH及DBIRCH 3种不同算法中综合聚类性能最优。实验结果表明,在3种算法中,BIRCH算法运算速度最快,但准确率最低;DBSCAN算法聚类性能高于BIRCH算法,但运算速度最慢;改进的DBIRCH算法运算效率略低于BIRCH算法,但聚类准确率最高。展开更多
针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点...针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点,从而提高算法的准确率。该算法不仅能够根据不同测试点的实际情况来选择不同的K值,而且利用环形过滤器避免了内存占用过大的问题。最后通过6组公开数据集对所提出的AAKNN算法进行了实验验证。实验结果表明,AAKNN与CM-KNN算法相比较于其余四种算法在准确率上平均提高2%,其中AAKNN算法相比较CM-KNN算法可以平均减少79%的内存消耗。展开更多
文摘基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5(YOLOv5)的网络架构中引入Selective Kernel Networks(SKNet)注意力模块,提出一种新的SK-YOLOv5网络,增强网络对多尺度复杂海洋目标的特征提取和自适应能力。经对比实验测试,在相同的海洋目标数据集上,改进后的网络比原网络整体检测及分类准确率提升了约9%。
文摘为解决实时分析处理的海洋Argo浮标剖面观测数据特有的数据密度较高、快速响应且需要识别任意形状簇等问题,提出了一种可通过单次扫描数据集进行有效处理的低复杂度聚类算法DBIRCH(Density-Based Balanced Iterative Reducing and Clustering Using Hierarchies)。该算法通过使用新引入的参数密度阈值修正因子,动态的更新限制CF(Clustering Feature)树生长的约束系数子空间阈值,同时结合密度关联思想在不同邻域内多次建立CF树且合并,最终以核心CF树子节点为聚类结果输出,避免了BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)算法对参数的过度依赖,同时因能处理任意形状簇从而提升了数据处理的整体鲁棒性,提高了处理Argo剖面监测数据的时效性和算法的整体吞吐速度。为测试算法的综合性能,使用真实Argo浮标剖面实时监测数据集,并根据不同的参数对算法做出多组对比实验,同时使用不同评价指标对算法从运行时间和聚类准确率上进行综合评估,从全局角度分析该算法在DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、BIRCH及DBIRCH 3种不同算法中综合聚类性能最优。实验结果表明,在3种算法中,BIRCH算法运算速度最快,但准确率最低;DBSCAN算法聚类性能高于BIRCH算法,但运算速度最慢;改进的DBIRCH算法运算效率略低于BIRCH算法,但聚类准确率最高。
文摘针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点,从而提高算法的准确率。该算法不仅能够根据不同测试点的实际情况来选择不同的K值,而且利用环形过滤器避免了内存占用过大的问题。最后通过6组公开数据集对所提出的AAKNN算法进行了实验验证。实验结果表明,AAKNN与CM-KNN算法相比较于其余四种算法在准确率上平均提高2%,其中AAKNN算法相比较CM-KNN算法可以平均减少79%的内存消耗。