期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
固体氧化物燃料电池复合阴极研究进展 被引量:2
1
作者 邬理伟 郑颖平 孙岳明 《电池工业》 CAS 2010年第1期53-56,共4页
介绍了复合阴极材料在中低温SOFC的研究进展,从化学动力学和三相界面理论阐述了复合阴极材料在降低阴极的极化电阻、界面电阻和极化过电位的机理,指明了复合阴极材料的重要作用和发展前景。
关键词 固体氧化物燃料电池 复合阴极 极化电阻 功率密度
下载PDF
Oxygen ionic conductivity of a composite electrolyte SDC-LSGM prepared via glycine-nitrate process
2
作者 邬理伟 郑颖平 +3 位作者 王绍荣 王振荣 景尧 孙岳明 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期87-90,共4页
Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so ... Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so as to obtain homogeneous nano-sized precursor powders. The X-ray diffraction (XRD) and the scan electron microscope (SEM) are used to investigate the phases and microstructures. The measurements and analyses of oxygen ionic conductivity of SDC-LSGM are carried out through the four-terminal direct current (DC) method and the electrochemical impendence spectroscopy, respectively. The optimum weight ratio of SDC-LSGM is 8∶2, of which the ionic conductivity is 0.113 S/cm at 800℃ and the conductivity activation energy is 0.620 eV. The impendence spectra shows that the grain boundary resistance becomes the main barrier for the ionic conductivity of electrolyte at lower temperatures. The appropriate introduction of LSGM to the electrolyte SDC can not only decrease the electronic conductivity but also improve the conditions of the grain and grain boundary, which is advantageous to cause an increase in oxygen ionic conductivity. 展开更多
关键词 Ce0.8Sm0.2O1.9-δ La0.9Sr0.1Ga0.8Mg0.2O3-δ composite electrolyte oxygen ionic conductivity
下载PDF
Synthesis and characterization of Ce_(0.8)Sm_(0.2)O_(1.9) nanopowders using an acrylamide polymerization process 被引量:2
3
作者 郑颖平 王绍荣 +2 位作者 王振荣 邬理伟 孙岳明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期92-95,共4页
Ce0.8Sm0.2O1.9(SDC) nanopowders were synthesized by an acrylamide polymerization process.The XRD results showed that SDC powders prepared at 700 °C possessed a cubic fluorite structure.Transmission electron micro... Ce0.8Sm0.2O1.9(SDC) nanopowders were synthesized by an acrylamide polymerization process.The XRD results showed that SDC powders prepared at 700 °C possessed a cubic fluorite structure.Transmission electron microscopy(TEM) indicated that the particle sizes of powders were in the range of 10-15 nm.A 98.3% of theoretical density was obtained when the SDC pellets were sintered at 1350 °C for 5 h,indicating that the powders had good sinterability.The conductivity of the sintered SDC ceramics was 0.019 S/cm at 6... 展开更多
关键词 acrylamide polymerization doped ceria solid oxide fuel cell SINTERING electrical conductivity rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部