期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进胶囊网络优化分层卷积的亚健康识别算法 被引量:1
1
作者 张利 邱存月 +2 位作者 张凯鑫 张大波 罗浩 《计算机科学与探索》 CSCD 北大核心 2021年第4期712-722,共11页
针对传统卷积神经网络(CNN)为获得高准确率不断堆叠卷积层、池化层致使模型结构复杂、训练时间长且数据处理方式单一的问题,提出改进胶囊网络优化分层卷积的亚健康识别算法。首先,对原始振动数据进行小波降噪和小波包降噪两种数据处理,... 针对传统卷积神经网络(CNN)为获得高准确率不断堆叠卷积层、池化层致使模型结构复杂、训练时间长且数据处理方式单一的问题,提出改进胶囊网络优化分层卷积的亚健康识别算法。首先,对原始振动数据进行小波降噪和小波包降噪两种数据处理,更好地保留原始信号中对亚健康识别有用的信息;其次,CNN采用分层卷积的思想,并行3个不同尺度的卷积核,多角度地进行特征提取;最后,将卷积核提取的特征输入到剪枝策略的胶囊网络中进行亚健康识别,改进的胶囊网络在保证准确率的同时加快亚健康识别时间,解决CNN结构过于复杂以及识别效果不佳的问题。实验结果表明,提出算法识别准确率高且识别时间较少。 展开更多
关键词 亚健康识别 卷积神经网络(CNN) 胶囊网络 小波降噪 小波包降噪
下载PDF
成长鸡群优化RBF神经网络的亚健康诊断模型 被引量:2
2
作者 郭炜儒 邱存月 +2 位作者 张大波 王彦捷 张利 《小型微型计算机系统》 CSCD 北大核心 2020年第5期961-966,共6页
针对RBF神经网络不能准确计算中心向量和节点宽度,导致RBF神经网络识别亚健康准确率达不到最优的问题,提出一种成长鸡群优化RBF神经网络的亚健康诊断模型.首先,对设备数据进行小波变换去除噪声,提取特征,将数据归一化处理;其次,用混沌... 针对RBF神经网络不能准确计算中心向量和节点宽度,导致RBF神经网络识别亚健康准确率达不到最优的问题,提出一种成长鸡群优化RBF神经网络的亚健康诊断模型.首先,对设备数据进行小波变换去除噪声,提取特征,将数据归一化处理;其次,用混沌搜索策略求得成长鸡群的初始种群;最后,对鸡群算法进行改进,将得到的优化参数输入到RBF神经网络模型进行训练,输出结果.解决RBF神经网络参数择优困难以及识别效果不佳问题.实验结果表明,提出算法收敛速度快、亚健康识别准确率较高. 展开更多
关键词 RBF神经网络 成长鸡群算法 混沌搜索 亚健康
下载PDF
动态区间的加权模糊聚类算法 被引量:5
3
作者 罗浩 王彦捷 +2 位作者 牛明航 邱存月 张利 《计算机科学与探索》 CSCD 北大核心 2020年第7期1142-1153,共12页
数据聚类在数据挖掘、数据分析中广泛应用,而不完整数据对数据聚类造成了很大困扰。针对不完整数据聚类中估值法填补缺失属性不准确的问题,提出动态区间的加权模糊聚类算法。首先,由属性相关度构造缺失属性的最近邻样本集,进而形成缺失... 数据聚类在数据挖掘、数据分析中广泛应用,而不完整数据对数据聚类造成了很大困扰。针对不完整数据聚类中估值法填补缺失属性不准确的问题,提出动态区间的加权模糊聚类算法。首先,由属性相关度构造缺失属性的最近邻样本集,进而形成缺失属性估值区间。为进一步减小区间填补误差,使用基于最近邻样本集的离散度的区间因子来动态调节区间大小。其次,为充分挖掘属性空间的隐含信息,同时降低离群点对聚类中心的影响,对完整的区间型数据集进行基于局部密度的样本加权。最后,通过以上改进完成区间型样本的加权模糊聚类。利用多个UCI数据集和人工数据集验证提出的聚类算法,实验结果表明:动态区间的加权模糊聚类算法能有效提高聚类准确性、鲁棒性以及收敛的稳定性。 展开更多
关键词 不完整数据 区间填补 加权 聚类算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部