The high degree of freedom and novel nonlinear phenomena of multimode fiber are attracting attention. In this work,we demonstrate a spatiotemporal mode-locked multimode fiber laser, which relies on microfiber knot res...The high degree of freedom and novel nonlinear phenomena of multimode fiber are attracting attention. In this work,we demonstrate a spatiotemporal mode-locked multimode fiber laser, which relies on microfiber knot resonance(MKR) via dissipative four-wave-mixing(DFMW) to achieve high-repetition-rate pulses. Apart from that, DFMW mode locking with switchable central wavelengths can also be obtained. It was further found that high pulse energy induced nonlinear effect of the dominant mode-locking mechanism transforming from DFMW to nonlinear Kerr beam cleaning effect(NL-KBC). The experimental results are valuable for further comprehending the dynamic characteristics of spatiotemporal mode-locked multimode fiber lasers, facilitating them much more accessible for applications.展开更多
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 91950105 and 62175116)the 1311 Talent Plan of Nanjing University of Posts and Telecommunications。
文摘The high degree of freedom and novel nonlinear phenomena of multimode fiber are attracting attention. In this work,we demonstrate a spatiotemporal mode-locked multimode fiber laser, which relies on microfiber knot resonance(MKR) via dissipative four-wave-mixing(DFMW) to achieve high-repetition-rate pulses. Apart from that, DFMW mode locking with switchable central wavelengths can also be obtained. It was further found that high pulse energy induced nonlinear effect of the dominant mode-locking mechanism transforming from DFMW to nonlinear Kerr beam cleaning effect(NL-KBC). The experimental results are valuable for further comprehending the dynamic characteristics of spatiotemporal mode-locked multimode fiber lasers, facilitating them much more accessible for applications.