期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RoBERTa-WWM和HDBSCAN的文本聚类算法
被引量:
1
1
作者
刘锟
曾曦
+1 位作者
邱梓珩
陈周国
《计算机与现代化》
2022年第3期48-52,63,共6页
在大数据环境下,从海量的互联网数据中获取热点话题是研究当前互联网中民意民情的基础,其中文本聚类是得到热点话题最常用的方法之一,可以分为文本向量化表示和聚类2个步骤。然而在文本向量化表示任务中,传统的文本表示模型无法准确表...
在大数据环境下,从海量的互联网数据中获取热点话题是研究当前互联网中民意民情的基础,其中文本聚类是得到热点话题最常用的方法之一,可以分为文本向量化表示和聚类2个步骤。然而在文本向量化表示任务中,传统的文本表示模型无法准确表示新闻、帖文等文本的上下文语境信息。在聚类任务中,最常使用的是K-Means算法和DBSCAN算法,但是它们对数据的聚类方式与实际中话题数据的分布不符,这使得现有的文本聚类算法在实际的互联网环境中应用效果很差。本文根据互联网中话题的数据分布情况,提出一种基于RoBERTa-WWM和HDBSCAN的文本聚类算法。首先利用预训练语言模型RoBERTa-WWM得到每一篇文本的文本向量,其次利用t-SNE算法对高维文本向量进行降维,最后利用基于层次的密度聚类算法的HDBSCAN算法对低维的文本向量进行聚类。实验结果表明提出的算法相较于现有的文本聚类算法,在含有噪声数据且分布不均衡的数据集上,聚类效果有很大的提升。
展开更多
关键词
文本聚类
预训练语言模型
可视化降维
密度聚类
下载PDF
职称材料
题名
基于RoBERTa-WWM和HDBSCAN的文本聚类算法
被引量:
1
1
作者
刘锟
曾曦
邱梓珩
陈周国
机构
中国电子科技集团公司第三十研究所
深圳市网联安瑞网络科技有限公司
出处
《计算机与现代化》
2022年第3期48-52,63,共6页
基金
国家自然科学基金资助项目(61803352)。
文摘
在大数据环境下,从海量的互联网数据中获取热点话题是研究当前互联网中民意民情的基础,其中文本聚类是得到热点话题最常用的方法之一,可以分为文本向量化表示和聚类2个步骤。然而在文本向量化表示任务中,传统的文本表示模型无法准确表示新闻、帖文等文本的上下文语境信息。在聚类任务中,最常使用的是K-Means算法和DBSCAN算法,但是它们对数据的聚类方式与实际中话题数据的分布不符,这使得现有的文本聚类算法在实际的互联网环境中应用效果很差。本文根据互联网中话题的数据分布情况,提出一种基于RoBERTa-WWM和HDBSCAN的文本聚类算法。首先利用预训练语言模型RoBERTa-WWM得到每一篇文本的文本向量,其次利用t-SNE算法对高维文本向量进行降维,最后利用基于层次的密度聚类算法的HDBSCAN算法对低维的文本向量进行聚类。实验结果表明提出的算法相较于现有的文本聚类算法,在含有噪声数据且分布不均衡的数据集上,聚类效果有很大的提升。
关键词
文本聚类
预训练语言模型
可视化降维
密度聚类
Keywords
text clustering
pre-training language model
visual dimensionality reduction
density clustering
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RoBERTa-WWM和HDBSCAN的文本聚类算法
刘锟
曾曦
邱梓珩
陈周国
《计算机与现代化》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部