为提高光伏电站辐照强度的预测精度,提出一种基于长短时记忆网络(long short term memory network,简称LSTM)和轻梯度提升机(light gradient boosting machine,简称LightGBM)的组合模型.以LightGBM模型的预测结果作为LSTM模型的一个特...为提高光伏电站辐照强度的预测精度,提出一种基于长短时记忆网络(long short term memory network,简称LSTM)和轻梯度提升机(light gradient boosting machine,简称LightGBM)的组合模型.以LightGBM模型的预测结果作为LSTM模型的一个特征输入,然后采用误差倒数法对以上两种模型的数据进行加权组合,得到组合模型的预测值.算例分析结果表明:与其他3种模型比较,该文组合模型的预测精度最高.展开更多
文摘为提高光伏电站辐照强度的预测精度,提出一种基于长短时记忆网络(long short term memory network,简称LSTM)和轻梯度提升机(light gradient boosting machine,简称LightGBM)的组合模型.以LightGBM模型的预测结果作为LSTM模型的一个特征输入,然后采用误差倒数法对以上两种模型的数据进行加权组合,得到组合模型的预测值.算例分析结果表明:与其他3种模型比较,该文组合模型的预测精度最高.