针对复杂环境下的室内高精度定位需求,提出了一种超宽带和惯导融合定位方案。结合位置估计过程可被划分为时间序列预测问题的特点,提出了一种基于长短时记忆(Long Short Term Memory,LSTM)网络的联合定位算法,并对其总体架构设计、数据...针对复杂环境下的室内高精度定位需求,提出了一种超宽带和惯导融合定位方案。结合位置估计过程可被划分为时间序列预测问题的特点,提出了一种基于长短时记忆(Long Short Term Memory,LSTM)网络的联合定位算法,并对其总体架构设计、数据预处理方法、网络结构设计、模型训练方法进行了研究。在此基础上,通过仿真和实测实验对联合定位算法进行验证,实验结果表明,该LSTM神经网络联合定位算法的定位精度优于传统TOA(Time of Arrival)、UKF(Unscented Kalman Filter)联合定位算法,适用复杂室内定位。展开更多
文摘针对复杂环境下的室内高精度定位需求,提出了一种超宽带和惯导融合定位方案。结合位置估计过程可被划分为时间序列预测问题的特点,提出了一种基于长短时记忆(Long Short Term Memory,LSTM)网络的联合定位算法,并对其总体架构设计、数据预处理方法、网络结构设计、模型训练方法进行了研究。在此基础上,通过仿真和实测实验对联合定位算法进行验证,实验结果表明,该LSTM神经网络联合定位算法的定位精度优于传统TOA(Time of Arrival)、UKF(Unscented Kalman Filter)联合定位算法,适用复杂室内定位。