期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于结构特征的药物靶点亲和力预测
1
作者
邵允昶
张媛媛
江明建
《现代信息科技》
2024年第5期162-166,共5页
预测药物与其靶向蛋白的结合亲和力是研发新药的关键步骤。传统的湿实验耗时长,成本高。随着人工智能技术的快速发展,在药物筛选阶段应用深度学习的技术可以大幅度提升研发效率。针对上述问题,提出一种基于卷积神经网络预测药物靶点亲...
预测药物与其靶向蛋白的结合亲和力是研发新药的关键步骤。传统的湿实验耗时长,成本高。随着人工智能技术的快速发展,在药物筛选阶段应用深度学习的技术可以大幅度提升研发效率。针对上述问题,提出一种基于卷积神经网络预测药物靶点亲和力的方法。将蛋白质和小分子的结构特征分别转换成对应的三维矩阵,送入对应的三维卷积神经网络中进行训练,然后再通过若干层全连接神经网络提取特征值,得到最终的亲和力值。实验结果表明,该模型可有效地预测药物靶点亲和力,具有良好的应用前景。
展开更多
关键词
人工智能
深度学习
卷积神经网络
蛋白质结构
药物靶点亲和力预测
下载PDF
职称材料
题名
基于结构特征的药物靶点亲和力预测
1
作者
邵允昶
张媛媛
江明建
机构
青岛理工大学
出处
《现代信息科技》
2024年第5期162-166,共5页
文摘
预测药物与其靶向蛋白的结合亲和力是研发新药的关键步骤。传统的湿实验耗时长,成本高。随着人工智能技术的快速发展,在药物筛选阶段应用深度学习的技术可以大幅度提升研发效率。针对上述问题,提出一种基于卷积神经网络预测药物靶点亲和力的方法。将蛋白质和小分子的结构特征分别转换成对应的三维矩阵,送入对应的三维卷积神经网络中进行训练,然后再通过若干层全连接神经网络提取特征值,得到最终的亲和力值。实验结果表明,该模型可有效地预测药物靶点亲和力,具有良好的应用前景。
关键词
人工智能
深度学习
卷积神经网络
蛋白质结构
药物靶点亲和力预测
Keywords
Artificial Intelligence
Deep Learning
Convolutional Neural Networks
protein structure
prediction of drug target binding affinity
分类号
TP39 [自动化与计算机技术—计算机应用技术]
T18 [一般工业技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于结构特征的药物靶点亲和力预测
邵允昶
张媛媛
江明建
《现代信息科技》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部