In this paper, we solve a problem proposed by Guo zhong about the uniqueness of n×n primitive matrices with the smallest number of positive entries which have n positive diagonal entries and primitive exponent k....In this paper, we solve a problem proposed by Guo zhong about the uniqueness of n×n primitive matrices with the smallest number of positive entries which have n positive diagonal entries and primitive exponent k. We also prove that the exponent set E(n, d) of the class of n×n primitive matrices with d (1≤d≤n-1) positive diagonal entries is E(n, d)={2, 3, …, 2n-d-1}.展开更多
文摘In this paper, we solve a problem proposed by Guo zhong about the uniqueness of n×n primitive matrices with the smallest number of positive entries which have n positive diagonal entries and primitive exponent k. We also prove that the exponent set E(n, d) of the class of n×n primitive matrices with d (1≤d≤n-1) positive diagonal entries is E(n, d)={2, 3, …, 2n-d-1}.