期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大田玉米作物系数无人机多光谱遥感估算方法 被引量:29
1
作者 韩文霆 邵国敏 +3 位作者 马代健 ZHANG Huihui 王毅 牛亚晓 《农业机械学报》 EI CAS CSCD 北大核心 2018年第7期134-143,共10页
作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖... 作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖度校正后的双作物系数法计算不同生长时期与不同水分胁迫玉米的作物系数,并使用自主研发的无人机多光谱系统航拍玉米的冠层多光谱(蓝、绿、红、红边、近红外,475~840 nm)影像,研究了不同生长时期(快速生长期、生长中期和生长后期)玉米的6种常用植被指数(Vegetation indices,VIs):归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、比值植被指数(SR)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),与作物系数K_c的关系模型及水分胁迫对其的影响。结果表明:玉米生长时期和水分胁迫是影响玉米VIs-K_c模型相关性的两个重要因素。不同生长时期玉米植被指数和K_c相关性不同:充分灌溉情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.731 2~0.940 1,p<0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.276 5~0.373 2,p<0.05,n=40)不同;水分胁迫情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.0002~0.0830,p<0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.366 2~0.848 7,p<0.05,n=40)不同。水分胁迫对VIs-K_c模型的相关性影响较大:快速生长期,充分灌溉玉米VIs-K_c模型的相关性(R2最大为0.940 1)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.083 0)强;生长中期至生长后期,充分灌溉玉米VIsK_c模型的相关性(R2最大为0.373 2)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.848 7)弱。部分植被指数和作物系数相关性较强;快速生长期充分灌溉玉米的VIs-K_c模型的相关性由大到小依次为:SR、EVI、VARI、GNDVI、SAVI、NDVI;生长中期至生长后期水分胁迫玉米的VIs-K_c模型的相关性由大到小依次为:SR、GNDVI、VARI、NDVI、SAVI、EVI;其中比值植被指数SR与作物系数K_c的相关性最好。结果表明采用无人机多光谱技术估算K_c具有一定的可行性。 展开更多
关键词 玉米 无人机遥感 作物系数 植被指数 蒸散量
下载PDF
基于无人机多光谱遥感的夏玉米叶面积指数估算方法 被引量:19
2
作者 邵国敏 王亚杰 韩文霆 《智慧农业(中英文)》 2020年第3期118-128,共11页
无人机多光谱遥感技术可以快速、无损地监测农作物叶面积指数(LAI)。为研究水分胁迫条件下,利用无人机多光谱植被指数估算夏玉米LAI的可行性,本研究基于无人机多光谱遥感系统,结合同时期实地采集的夏玉米LAI,选择5种植被指数,包括归一... 无人机多光谱遥感技术可以快速、无损地监测农作物叶面积指数(LAI)。为研究水分胁迫条件下,利用无人机多光谱植被指数估算夏玉米LAI的可行性,本研究基于无人机多光谱遥感系统,结合同时期实地采集的夏玉米LAI,选择5种植被指数,包括归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),作为模型输入参数,使用随机森林回归算法建立全生育期不同灌溉条件下大田玉米冠层植被指数与LAI之间的关系模型,并与一元线性回归和多元线性回归算法建立的模型进行对比分析。结果表明,在充分灌溉条件下,植被指数的多元线性回归模型可以较好地估算LAI(R2=0.83);在水分胁迫条件下,植被指数的随机森林回归模型可以较好地估算LAI(R2=0.74~0.87),水分胁迫因素对该模型影响较小,且NDVI和VARI对估算LAI的贡献最大。上述结果表明基于无人机多光谱遥感技术,使用随机森林回归算法估算多种灌溉条件下的夏玉米LAI是可行的。该研究为实现快速、准确地监测全生育期不同灌溉条件下的大田夏玉米LAI提供了技术和方法支持。 展开更多
关键词 无人机 叶面积指数(LAI) 植被指数 多光谱遥感 水分胁迫 随机森林回归
下载PDF
无人机多光谱遥感反演冬小麦SPAD值 被引量:38
3
作者 周敏姑 邵国敏 +2 位作者 张立元 姚小敏 韩文霆 《农业工程学报》 EI CAS CSCD 北大核心 2020年第20期125-133,共9页
为研究无人机多光谱遥感5个波段光谱反射率反演冬小麦SPAD(Soil and Plant Analyzer Development)值的可行性,该研究采用六旋翼无人机搭载五波段多光谱相机,采集冬小麦拔节期、孕穗期、抽穗期、开花期的冠层光谱影像并提取反射率特征参... 为研究无人机多光谱遥感5个波段光谱反射率反演冬小麦SPAD(Soil and Plant Analyzer Development)值的可行性,该研究采用六旋翼无人机搭载五波段多光谱相机,采集冬小麦拔节期、孕穗期、抽穗期、开花期的冠层光谱影像并提取反射率特征参数,建立SPAD值的反演模型。结果表明,当波长范围在蓝光、绿光和红光波段,冬小麦拔节期、孕穗期和开花期的无人机多光谱影像反射率参数与SPAD值呈负相关关系,而在抽穗期,二者呈正相关;当波长范围为红边及近红外波段,在整个生长期,二者均呈现正相关关系。该研究构建冬小麦SPAD值反演模型采用了主成分回归、逐步回归和岭回归法,经对比发现基于逐步回归法构建的模型效果最优,该模型的校正决定系数为0.77,主成分回归法次之,岭回归法较差。此外,冬小麦抽穗期多光谱反射率反演SPAD值效果最显著,主成分回归、岭回归和逐步回归3种回归模型的校正决定系数分别为0.72、0.74和0.77。该研究可为无人机多光谱遥感监测作物长势、实现精准农业生产管理提供技术依据。 展开更多
关键词 无人机 遥感 冬小麦 多光谱影像 回归模型 SPAD
下载PDF
基于无人机遥感与植被指数的冬小麦覆盖度提取方法 被引量:70
4
作者 牛亚晓 张立元 +1 位作者 韩文霆 邵国敏 《农业机械学报》 EI CAS CSCD 北大核心 2018年第4期212-221,共10页
基于开源飞控Pixhawk开发了一套集成稳定云台、位置与姿态系统(Position and orientation system,POS)数据采集模块的无人机多光谱遥感图像采集系统,同步采集520~920 nm范围内的红、绿和近红外波段信息。以冬小麦为例,分别在越冬期、拔... 基于开源飞控Pixhawk开发了一套集成稳定云台、位置与姿态系统(Position and orientation system,POS)数据采集模块的无人机多光谱遥感图像采集系统,同步采集520~920 nm范围内的红、绿和近红外波段信息。以冬小麦为例,分别在越冬期、拔节期、挑旗期和抽穗期进行飞行实验,飞行高度55 m,多光谱影像地面分辨率2.2 cm。采用监督分类与植被指数统计直方图相结合的方式,提出了一种田间尺度小麦覆盖度快速提取的方法,给出归一化植被指数(Normalized difference vegetation index,NDVI)、土壤调节植被指数(Soil-adjusted vegetation index,SAVI)及修正土壤调节植被指数(Modified soil-adjusted vegetation index,MSAVI)对应的植被像元与土壤像元的分类阈值,分别为0.475 6、0.705 6和0.635 0。同时利用基于同步采集的地面分辨率可达0.8 cm的高清可见光遥感图像提取了相应时期的冬小麦覆盖度参考值。结果表明,基于无人机多光谱遥感技术及植被指数法可以较好地提取冬小麦越冬期、拔节期、挑旗期和抽穗期的植被覆盖度信息。与SAVI、MSAVI相比,基于NDVI分类阈值的提取效果最好,绝对误差最小。 展开更多
关键词 冬小麦 植被覆盖度 无人机 多光谱遥感影像 植被指数 监督分类
下载PDF
基于无人机遥感的冬小麦叶绿素含量多光谱反演 被引量:16
5
作者 周敏姑 邵国敏 +2 位作者 张立元 刘治开 韩文霆 《节水灌溉》 北大核心 2019年第9期40-45,共6页
以杨凌地区冬小麦为研究对象,使用六旋翼无人机搭载RedEdge多光谱相机进行叶绿素监测试验。共选取65个样本,每个样本为1 m×1 m的样地,在样地内选取小麦冠层的7片叶片,测量相对叶绿素含量SPAD值,取平均值作为实测值,GPS记录位置信... 以杨凌地区冬小麦为研究对象,使用六旋翼无人机搭载RedEdge多光谱相机进行叶绿素监测试验。共选取65个样本,每个样本为1 m×1 m的样地,在样地内选取小麦冠层的7片叶片,测量相对叶绿素含量SPAD值,取平均值作为实测值,GPS记录位置信息。地面数据测量与无人机飞行测量同步进行。用Pix4D mapper软件对无人机多光谱影像进行拼接处理,得到4个波段下小麦冠层叶片反射率光谱图像,并利用ENVI 5.1软件提取光谱反射率数据。选取8种常用光谱参数,其中与小麦SPAD相关性较高的有SAVI、EVI2、DVI、RVI、NDVI、EVI和ARVI共7种,相关系数均在0.67以上。用7种光谱参数和小麦SPAD实测值,使用一元线性回归法和多元线性回归法构建反演模型并进行精度分析,结果表明:一元线性回归法构建的SPAD-SAVI模型精度最佳,决定系数(R^2)为0.866,均方根误差RMSE为0.245,可作为无人机遥感快速、无损监测冬小麦叶绿素的技术手段。 展开更多
关键词 冬小麦 叶绿素相对含量 六旋翼无人机 无人机遥感 反演
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部