期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
红外与可见光图像多尺度Transformer融合方法 被引量:4
1
作者 陈彦林 王志社 +2 位作者 邵文禹 杨帆 孙婧 《红外技术》 CSCD 北大核心 2023年第3期266-275,共10页
目前主流的深度融合方法仅利用卷积运算来提取图像局部特征,但图像与卷积核之间的交互过程与内容无关,且不能有效建立特征长距离依赖关系,不可避免地造成图像上下文内容信息的丢失,限制了红外与可见光图像的融合性能。为此,本文提出了... 目前主流的深度融合方法仅利用卷积运算来提取图像局部特征,但图像与卷积核之间的交互过程与内容无关,且不能有效建立特征长距离依赖关系,不可避免地造成图像上下文内容信息的丢失,限制了红外与可见光图像的融合性能。为此,本文提出了一种红外与可见光图像多尺度Transformer融合方法。以Swin Transformer为组件,架构了Conv Swin Transformer Block模块,利用卷积层增强图像全局特征的表征能力。构建了多尺度自注意力编码-解码网络,实现了图像全局特征提取与全局特征重构;设计了特征序列融合层,利用SoftMax操作计算特征序列的注意力权重系数,突出了源图像各自的显著特征,实现了端到端的红外与可见光图像融合。在TNO、Roadscene数据集上的实验结果表明,该方法在主观视觉描述和客观指标评价都优于其他典型的传统与深度学习融合方法。本方法结合自注意力机制,利用Transformer建立图像的长距离依赖关系,构建了图像全局特征融合模型,比其他深度学习融合方法具有更优的融合性能和更强的泛化能力。 展开更多
关键词 图像融合 Swin Transformer 自注意力机制 多尺度 红外图像
下载PDF
红外与可见光图像交互注意力生成对抗融合方法 被引量:6
2
作者 王志社 邵文禹 +1 位作者 杨风暴 陈彦林 《光子学报》 EI CAS CSCD 北大核心 2022年第4期310-320,共11页
为了解决生成对抗融合方法获得的融合图像不能同时保留红外图像典型目标和可见光图像纹理细节的问题,提出一种红外与可见光图像交互注意力生成对抗融合方法。首先,在生成网络模型中采用权重参数共享的双路编码器架构,利用多尺度聚合卷... 为了解决生成对抗融合方法获得的融合图像不能同时保留红外图像典型目标和可见光图像纹理细节的问题,提出一种红外与可见光图像交互注意力生成对抗融合方法。首先,在生成网络模型中采用权重参数共享的双路编码器架构,利用多尺度聚合卷积模块提取源图像各自的深度特征;其次,在融合层设计上,利用交互注意力融合模型建立两类图像局部特征的全局依赖特性,获得的注意力图更聚焦于红外典型目标和可见光纹理细节,实现红外与可见光图像端到端融合。最后,在对抗网络模型中,采用双鉴别器均衡判定融合图像与源图像间的真假性,相互补偿的损失函数优化生成网络模型获得最佳的融合结果。与现有典型融合方法的对比实验结果表明,该方法能够获得更平衡的融合结果,在主观视觉描述和客观指标评价上都优于其他方法。 展开更多
关键词 图像融合 交互注意力 生成对抗网络 深度学习 红外图像 可见光图像
下载PDF
红外与可见光图像注意力生成对抗融合方法研究 被引量:5
3
作者 武圆圆 王志社 +2 位作者 王君尧 邵文禹 陈彦林 《红外技术》 CSCD 北大核心 2022年第2期170-178,共9页
目前,基于深度学习的融合方法依赖卷积核提取局部特征,而单尺度网络、卷积核大小以及网络深度的限制无法满足图像的多尺度与全局特性。为此,本文提出了红外与可见光图像注意力生成对抗融合方法。该方法采用编码器和解码器构成的生成器... 目前,基于深度学习的融合方法依赖卷积核提取局部特征,而单尺度网络、卷积核大小以及网络深度的限制无法满足图像的多尺度与全局特性。为此,本文提出了红外与可见光图像注意力生成对抗融合方法。该方法采用编码器和解码器构成的生成器以及两个判别器。在编码器中设计了多尺度模块与通道自注意力机制,可以有效提取多尺度特征,并建立特征通道长距离依赖关系,增强了多尺度特征的全局特性。此外,构建了两个判别器,以建立生成图像与源图像之间的对抗关系,保留更多细节信息。实验结果表明,本文方法在主客观评价上都优于其他典型方法。 展开更多
关键词 图像融合 通道自注意力机制 深度学习 生成对抗网络 红外图像 可见光图像
下载PDF
红外与可见光图像多特征自适应融合方法 被引量:3
4
作者 王君尧 王志社 +2 位作者 武圆圆 陈彦林 邵文禹 《红外技术》 CSCD 北大核心 2022年第6期571-579,共9页
由于成像机理不同,红外图像以像素分布表征典型目标,而可见光图像以边缘和梯度描述纹理细节,现有的融合方法不能依据源图像特征自适应变化,造成融合结果不能同时保留红外目标特征与可见光纹理细节。为此,本文提出红外与可见光图像多特... 由于成像机理不同,红外图像以像素分布表征典型目标,而可见光图像以边缘和梯度描述纹理细节,现有的融合方法不能依据源图像特征自适应变化,造成融合结果不能同时保留红外目标特征与可见光纹理细节。为此,本文提出红外与可见光图像多特征自适应融合方法。首先,构建了多尺度密集连接网络,可以有效聚合所有不同尺度不同层级的中间特征,利于增强特征提取和特征重构能力。其次,设计了多特征自适应损失函数,采用VGG-16网络提取源图像的多尺度特征,以像素强度和梯度为测量准则,以特征保留度计算特征权重系数。多特征自适应损失函数监督网络训练,可以均衡提取源图像各自的特征信息,从而获得更优的融合效果。公开数据集的实验结果表明,该方法在主、客观评价方面均优于其他典型方法。 展开更多
关键词 图像融合 密集连接 自适应损失函数 可见光图像 红外图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部