期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的黑臭水体遥感信息提取模型 被引量:11
1
作者 邵琥翔 丁凤 +1 位作者 杨健 郑子铖 《长江科学院院报》 CSCD 北大核心 2022年第4期156-162,共7页
黑臭水体分布广泛,严重损害人民的居住环境和城市整体美观形象。以河北省廊坊市为研究区,利用高分二号(GF-2)多光谱数据和实测数据,使用PSPNet(Pyramid Scene Parsing Network)和U-Net模型对黑臭水体遥感信息提取进行对比实验研究。基... 黑臭水体分布广泛,严重损害人民的居住环境和城市整体美观形象。以河北省廊坊市为研究区,利用高分二号(GF-2)多光谱数据和实测数据,使用PSPNet(Pyramid Scene Parsing Network)和U-Net模型对黑臭水体遥感信息提取进行对比实验研究。基于可见光波段(RGB)及近红外波段(NIR)计算归一化差异植被指数(NDVI)和归一化差异黑臭水体指数(NDBWI),针对细小形状的黑臭水体普遍存在的漏检问题,引入注意力机制模块对模型进行优化改进,构建改进型深度学习黑臭水体遥感信息提取模型。结果表明:输入RGB+NIR+NDVI+NDBW六通道组合遥感影像并引入注意力机制的U-Net网络模型对黑臭水体的提取结果最佳,其精度评价指标F1-srore、MIoU、Recall分别达到了0.8645、0.8681、0.8359。 展开更多
关键词 黑臭水体 深度学习模型 PSPNet网络模型 U-Net网络模型 GF-2卫星 遥感信息 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部