Harvesting the promising high energy density of advanced electrode materials in lithium-ion batteries is critically dependent on a mechanistic understanding on how the materials function and degrade along with the bat...Harvesting the promising high energy density of advanced electrode materials in lithium-ion batteries is critically dependent on a mechanistic understanding on how the materials function and degrade along with the battery cycling.Here,we tracked phase transformations during(de)lithiation of Sb_(2)Se_(3) single crystals using in situ high-resolution transmission electron microscopy(HRTEM)technique,and revealed electro-chemo-mechanical evolution at the reaction interface.The effect of this electro-chemo-mechanical coupling has a complicated interplay on the lithiation kinetics and causes various types of defects at the reaction front,including dislocation dipoles,antiphase boundaries,and cracks.In return,the formed cracks and related defects build a path for fast diffusion of lithium ions and trigger a highly anisotropic lithiation at the twisted reaction front,giving rise to the formation of presumably "dead" Sb_(2)Se_(3) nanodomains in amorphous Li_(x)Sb_(2)Se_(3).The detailed mechanistic understanding may facilitate the rational design of high-capacity electrode materials for battery applications.展开更多
基金supported by the National Key R&D Program of China(2018YFB1304902)the National Natural Science Foundation of China(11904372,U1813211,and 12004034)+2 种基金Beijing Institute of Technology Research Fund Program for Young ScholarsBeijing Institute of Technology Laboratory Research Project(2019BITSYA03)China Postdoctoral Science Foundation Funded Project(2021M690386)。
文摘Harvesting the promising high energy density of advanced electrode materials in lithium-ion batteries is critically dependent on a mechanistic understanding on how the materials function and degrade along with the battery cycling.Here,we tracked phase transformations during(de)lithiation of Sb_(2)Se_(3) single crystals using in situ high-resolution transmission electron microscopy(HRTEM)technique,and revealed electro-chemo-mechanical evolution at the reaction interface.The effect of this electro-chemo-mechanical coupling has a complicated interplay on the lithiation kinetics and causes various types of defects at the reaction front,including dislocation dipoles,antiphase boundaries,and cracks.In return,the formed cracks and related defects build a path for fast diffusion of lithium ions and trigger a highly anisotropic lithiation at the twisted reaction front,giving rise to the formation of presumably "dead" Sb_(2)Se_(3) nanodomains in amorphous Li_(x)Sb_(2)Se_(3).The detailed mechanistic understanding may facilitate the rational design of high-capacity electrode materials for battery applications.